

TOPIC 15 HW MS

1.	(a)	E = hv Allow = hf		
		$v = E / h = 2.84 \pm 10^{19} / 6.63 \times 10^{34} = 4.28 \times 10^{14} \text{ s}^{1} / \text{Hz}$ Allow 4.3 × 10 ¹⁴ s ¹ / Hz Answer must be in the range: 4.28 4.30 × 10 ¹⁴	1	
	(b)	(One colour of) light is absorbed (to excite the electron) If light emitted, $CE = 0$	1	
		The remaining colour / frequency / wavelength / energy is transmitted (through the solution) Allow light reflected is the colour that we see.	1	
	(c)	Bigger	• 1	
		Blue light would be absorbed <i>OR</i> light that has greater energy than red light would be absorbed <i>OR</i> higher frequency (of light absorbed / blue light) leads to higher <i>E</i>	1	
		Can only score M2 if M1 is correct.	1	
	(d)	 Any three from: (Identity of the) metal Charge (on the metal) / oxidation state / charge on composition (Identity of the) ligands Co-ordination number / number of ligands Shape)lex 3 max	[9]
2.	(a)	Variable oxidation state eg Fe(II) and Fe (III) Any correctly identified pair Allow two formulae showing complexes with different oxidation states even if oxidation state not given	1	
		(Characteristic) colour (of complexes)	1	
		eg Cu ²⁺ (aq) / [Cu(H ₂ O) ₆] ²⁺ is blue Any correct ion with colour scores M3 and M4 Must show (aq) or ligands OR identified	1	
		colourea compounae.g. CoCO₃)	1	

www.youtube.com/megalecture

1

Page 1 of 8

MEGA LECTURE

(b)	Tetr	rahedral		
	[Cu(Cl₄]²- / [CoCl₄]²- Any correct complex (Note charges must be correct)	I	
	Squ	are planar	1	
	(NH),PtCl ₂	1	
	、 、、	Any correct complex	1	
	Line	ear Do not allow linear planar	1	
	[Ag((NH ₃) ₂]+ [AgCl ₂]- etc	1	
(c)	(i)	$[Ca(H_2O)_6]^{2+}$ + EDTA ⁴⁻ [CaEDTA] ²⁻ + 6H ₂ O If equation does not show increase in number of moles of particles CE = 0/3 for (c)(ii) If no equation, mark on	1	
	(ii)	2 mol of reactants form 7 mol of products Allow more moles/species of products Allow consequential to (c)(i)	1	
		Therefore disorder increases	1	
		Entropy increases / +ve entropy change / free-energy ch negative	ange is	
	(iii)	Moles EDTA = 6.25 × 0.0532 / 1000 = (3.325 × 10⊣)	1	
		Moles of Ca ²⁺ in 1 dm ³ = 3.325 × 10 ⁻⁴ × 1000 / 150 = (2.2 10 ⁻³)	1 17 ×	
		Mark is for M1 × 1000 / 150 OR M1 × 74.1 If ratio of Ca ²⁺ : EDTA is wrong or 1000 / 150 is wrong, CE and can score M1 only This applies to the alternative		
	Mass of Ca(OH) ₂ = $2.217 \times 10^{-3} \times 74.1 = 0.164$ g M1 × 74.1 × 1000 / 150 Answer expressed to 3 sig figs or better Must give unit to score mark Allow 0.164 to 0.165	Mass of Ca(OH) ₂ = 2.217 × 10 ⁻³ × 74.1 = 0.164 g M1 × 74.1 × 1000 / 150 Answer expressed to 3 sig figs or better Must give unit to score mark Allow 0.164 to 0.165	1	
		1	[17]	
(a)	W is	s CuCl _{4²⁻}		
	Yello	ow-green/yellow/green Not necessary to indicate solution Do not allow precipitate/solid	1	

2

3.

www.youtube.com/megalecture

1

1

 $[Cu(H_2O)_6]^{2*} + 4Cl - CuCl_{4^{2-}} + 6H_2O$ Allow + 4HCl $4H^{+}$

www.megalecture.com

Page 3 of 8

MEGA LECTURE

(b)	X is (Cu(H₂O)₄(OH)₂ Allow Cu(OH)₂/copper hydroxide	
	Blue	precipitate/solid- Ignore shades	1
	[Cu(ŀ	H₂O)₅]²+ + 2NH₃ Cu(H₂O)₄(OH)₂ + 2NH₄+ Allow any balanced equation/equations leading to this hydroxide or Cu(OH)₂ But must use ammonia	1
(c)	Y is [[Cu(NH₃)₄(H₂O)₂]²+	1
	Deep	o/dark/royal <u>blue solution</u> QoL	1
	Cu(H	$H_2O)_4(OH)_2 + 4NH_3 [Cu(NH_3)_4(H_2O)_2]^{2+} + 2H_2O + 2OH^2$ Accept equation for formation from Cu(OH)_2	1
(d)	Z is (CuCO ₃ Allow copper carbonate	1
	Gree	en solid/precipitate Allow blue-green precipitate	1
		\rightarrow	1
(-)	(Cu(r	$\Pi_2 \bigcup_{\beta}]_{2^+} + \bigcup_{\beta} (2^+) = \bigcup_{\alpha} (2^+) \oplus \prod_{\beta} (2^+) \oplus \bigoplus_{\beta} (2^+) \oplus \bigoplus_{\beta} (2^+) \oplus \prod_{\beta} (2^+) \oplus \bigoplus_{\beta} (2$	1
(e)	(1)	Allow hydrated ions State symbols not essential but penalise if	
		wiong	1
		Do not allow description of solids	1
		Green Allow yellow/(red-)brown/orange	1
	(ii)	 Any two correct points about copper extraction from two of these three categories: Any relevant mention of lower energy consumption <i>Do not allow reference to electricity alone or to temperature alone.</i> Any relevant mention of benefits of less mining (of copper <i>Allow avoids depletion of (copper ore) resources</i> Less release of CO₂ (or CO) into the atmosphere <i>Not just greenhouse gases. Must mention CO</i>₂ or CO 	ore)
		Max	x 2

www.youtube.com/megalecture

4

Page 4 of 8

[17]

MEGA LECTURE

4.	(a)	a) (i)	(i) Correctly plots all points (± one square) and draws straight line		
			Lose this mark if the candidate's line is doubled		
			Lose this mark if the line does not pass within one square of the origin, extending the line if necessary.		
			Plotted points cover over half of grid	1	
		(ii)	0.046 ± 0.002 (mol dm 3)	1	
			0.088 to 0.096 (mol dm ³) Allow M1 × 2 Allow two marks for correct answer. Answer must be to at least two significant figures.	1	
		(iii)	Total volume = (100 × 0.1) / 0.04 = 250 (cm ³) Allow any correct alternative method of working.	1	
			Therefore add 150 cm ³ Correct answer without working scores M2 only.	1	
	(b)	lro oxy	n needed for haemoglobin / for red blood cells / to carry /gen around the body Accept well-water may contain eg Ca ²⁺ ions / dissolved minerals that are good for bones / teeth etc.	1	[7]
5.	(a)	Sa	me phase/state		
	(b)	Be	cause can exist in one oxidation state Allow do not have variable oxidation states		
	(c)	21-	+ $S_2O_{s^2}$ I_2 + 2SO _{4²⁻} Ignore state symbols Allow multiples		
	(d)	Bo	1 th (ions)have a negative charge Or both have the same charge Or (ions) repel each other Do-not allow both molecules have the same charge (contradiction)		
	(e)	2F	$ \stackrel{\rightarrow}{\to} 1 \\ e^{_{2^{+}}} + S_{_{2}}O_{_{8^{2^{-}}}} 2Fe^{_{3^{+}}} + 2SO_{_{4^{2^{-}}}} $		
		2Fo	e ³⁺ + 2I- 2Fe ²⁺ + I ₂		
			1		

5

www.youtube.com/megalecture

MEGA LECTURE

Equations can be in any order Positive and negative (ions)/oppositely charged (ions) Mark independently

(f) Equations 1 and 2 can occur in any order Allow idea of Fe³⁺ converted to Fe²⁺ then Fe²⁺ converted back to Fe³⁺

[8]

Page 6 of 8

1

1

6

MEGA LECTURE

WWW.MEGALECTURE.COM

www.youtube.com/megalecture

Page 7 of 8

(c)	Moles MnO₄- in 19.6 cm₃ = 19.6 × 0.022 × 10-₃ = 4.312 ×10-₄	1	
	Moles Fe₂+ in 25 cm₃ = 5 × 4.312 × 10⊣ = 2.156 × 10-₃	1	
	Moles Fe₂+ in 250 cm₃ = 10 × 2.156 × 10⁻₃ = 2.156 × 10⁻₂	1	
	Mass Fe ²⁺ = moles × A_r $A_r = 2.156 \times 10^{-2} \times 55.8 = 1.203 \text{ g}$	1	
	Percentage by mass of carbon = (1.270 - 1.203) × 100/1.270 = 5.28%	1	
(d)	Repeat the titration and take an average of the concordant resu	1 Ilts	
(e)	Analyse several samples from different parts of the molten iron	1	
		[9	ני
В		[1	1
А		L.	
D		L1	1

10. D [1]

8.

9.

www.youtube.com/megalecture