

A LEVEL CHEMISTRY

TOPIC 15 - TRANSITION METALS AND COMPLEX IONS

ASSESSED HOMEWORK

	Answer all questions	
	Max 80 marks	
Name		
Mark	/80% Grade	

 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light.

1	Excited state
$\Delta E = 2.84 \times 10^{-1}$	₉ J
	Ground state

(a) Give the equation that relates the energy change *E* to the Planck constant *h* and the frequency of the visible light *v*.

Use this equation and the information in the diagram to calculate a value for the frequency of the visible light, and state the units. The Planck constant $h = 6.63 \times 10^{-34} \text{ J s}$.

Equation
Calculation
··········

(b) Explain why this electron transition causes a solution containing the transition metal ion to be coloured.

.....

(2)

• • •	
MEGA	LECTURE

······	
	(2)

wintin the obale cartifixe of the contraction of th

(c) The energy change shown in the diagram represents the energy of red light and leads to a solution that appears blue.Blue light has a higher frequency than red light.

Suggest whether the energy change *E* will be bigger, smaller or the same for a transition metal ion that forms a red solution. Explain your answer. Energy change Explanation (2) State **three** different features of transition metal complexes that cause a change in the value of E, the energy change between the ground state and the excited state of the d electrons. Feature Feature Feature 3

(d)

(3)

(Total 9 marks)

Give **two other** characteristic properties of transition metals. For each

2. Due to their electron arrangements, transition metals have characteristic properties including catalytic action and the formation of complexes with different shapes.

(a)

	~
	O
	<i>Q</i> : *
	<u>.</u>
	~ V
	X
Other than octa	ahedial, there are several different shapes shown by
transition meta	al complexes. Name three of these shapes and for each
one give the io	ormula of a complex with that shape.
W	

(6)

(c) It is possible for Group 2 metal ions to form complexes. For example, the [Ca(H₂O)₅]²+ ion in hard water reacts with EDTA⁴- ions to form a complex ion in a similar manner to hydrated transition metal ions. This reaction can be used in a titration to measure the concentration of calcium ions in hard water.

(i)	Write an equation for the equilibrium that is established when hydrated calcium ions react with EDTA ⁴⁻ ions.	
		(1)
(ii)	Explain why the equilibrium in part (c)(i) is displaced almost completely to the right to form the EDTA complex.	
		(3)
(iii)	In a litration, 6.25 cm³ of a 0.0532 mol dm¬³ solution of EDTA reacted completely with the calcium ions in a 150 cm³ sample of a saturated solution of calcium hydroxide.	
	Calculate the mass of calcium hydroxide that was dissolved in 1.00 dm ³ of the calcium hydroxide solution.	

 (3) (Total 17 marks)

3. The scheme below shows some reactions of copper(II) ions in aqueous solution.

W, X, Y and Z are all copper-containing species.

(a) Identify ion **W**. Describe its appearance and write an equation for its formation from $[Cu(H_2O)_{\epsilon}]^{2+}(aq)$ ions.

Appearance
Equation

(b) Identify compound X. Describe its appearance and write an equation for its formation from $[Cu(H_2O)_6]^{2+}(aq)$ ions.

Compound

X

Appearance

......

Equation
.....

(3)

(3)

(C)	formation from X .		
	lon	Y	
	Арр	earance	
	Equa	ation	(3)
(d)		tify compound Z . Describe its appearance and write an equation s formation from $[Cu(H_2O)_6]^{2+}(aq)$ ions.	()
	Com	pound Z	
	Арр	earance	
	Equa	ation	(3)
			(0)
(e)		per metal can be extracted from a dilute aqueous solution aining copper(II) ions using scrap iron.	
	(i)	Write an equation for this reaction and give the colours of the initial and final aqueous solutions.	
		Equation	
		Initial colour	
		Final colour	(3)
	(ii)	This method of copper extraction uses scrap iron. Give two other reasons why this method of copper extraction is more	

environmentally friendly than reduction of copper oxide by carbon.

Reason	
1	
Reason	
2	
	(0)
	(2) (Total 17 marks)

4. (a) The concentration of iron(III) ions in a dilute solution can be determined by visible spectrometry. The absorption of light by a number of solutions of iron(III) sulfate, Fe₂(SO₄)₃(aq), was measured. The results are shown in the table below.

Concentration of Fe₂(SO₄)₃(aq) / mol dm-₃	Absorbance / %
0.020	2.2
0.040	4.7
0.060	7.0
0.080	9.4
0,700	11.8

(i) Use these results to plot a graph of percentage absorbance (*y*-axis) against concentration of iron(III) sulfate solution on the grid below.

Draw a straight line of best fit.

(2)

(ii)	Use your graph to determine the concentration of iron(III) ions in a solution of $Fe_2(SO_4)_3$ that has an absorbance of 5.4%.	
		(2)
(iii)	Calculate the volume of water that should be added to 100 cm ³ of a 0.10 mol dm ⁻³ solution of iron(III) sulfate to make a 0.040 mol dm ⁻³ solution.	
	Show your working.	
	~	
	~	
		(2)
	one reason why well-water may be more beneficial to health than water.	
٠٠٠٠٠٠		
		(1)
	(Total 7 m	arks)

(b)

5. Transition metal ions can act as homogeneous catalysts in redox reactions. For example, iron(II) ions catalyse the reaction between peroxodisulfate $(S_2O_{\epsilon^2})$ ions and iodide ions.

(a)	State the meaning of the term <i>homogeneous</i> .	
		(1)
(b)	Suggest why ions from s block elements do not usually act as catalysts.	
		(1)
(c)	Write an equation for the overall reaction that occurs, in aqueous solution, between $S_2O_8^{2-}$ ions and I- ions.	
		(1)
(d)	Give one reason why, in the absence of a catalyst, the activation energy for the reaction between $S_2O_{\epsilon^{2-}}$ ions and I- ions is high.	
		(1)
(e)	Write two equations to show how Fe $^{2+}$ ions can catalyse the reaction between S $_2$ O $_8$ $^2-$ ions and I- ions. Suggest one reason why the activation energy for each of these reactions is low.	
	Equation 1	
	Equation 2	
	Reason	

.

		(3)
(f)	Explain why Fe ³⁺ ions are as effective as Fe ²⁺ ions in catalysing this reaction.	
		(4)

(Total 8 marks)

wind the dale citable.

- **6.** The redox reaction, in aqueous solution, between acidified potassium manganate(VII) and sodium ethanedioate is autocatalysed.
 - (a) Write an equation for this redox reaction. Identify the species that acts as the catalyst. Explain how the properties of the species enable it to act as a catalyst in this reaction. (6) (b) Sketch a graph to show how the concentration of MnO₄ ions varies with time in this reaction. Explain the shape of the graph.

	(4)
(Total 10 mari	ks)
aeo a le co	
The objective of the contraction	
The gale co	
The sale	
(Total 10 mark	

7. Iron from the Blast Furnace contains carbon. In the steel-making process, oxygen is blown through molten impure iron. At stages during this process samples of iron are taken and analysed to determine the remaining carbon content. One method of analysis involves a redox titration.

At one stage a 1.27g sample of this impure iron was reacted with an excess of dilute sulphuric acid. All of the iron in the sample was converted into iron(II) sulfate, and hydrogen was evolved. The solution formed was made up to 250 cm³. A 25.0 cm³ sample of this solution reacted completely with exactly 19.6 cm³ of a 0.0220 mol dm⁻¹ solution of potassium manganate(VII).

Write an equation for the reaction between iron and dilute sulphuric acid.
Write an equation for the reaction of iron(II) ions with manganate(VII) ions in acid solution.
Assuming that carbon is the only impurity, calculate the percentage by mass of carbon in the 1.27g sample.

	(a)	experiment?		
			(1)	
	(e)	Suggest one way in which the reliability of this analysis could be improved.		
			<i>(</i> 4)	
		(Total 9 mai	(1) rks)	
8.	Whice elem	ch one of the following electronic configurations is that of a transition nent?		
	Α	[Ar] 4s ² 3d ¹⁰		
	В	[Ar] 4s ² 3d ⁹		
	С	[A] 4s ² 3d ⁰		
	D	[Ar] 4s ² 3d ¹⁰ 4p ¹ (Total 1 ma	ark)	
9.	with a	O720 g sample of reducing agent R was dissolved in water and acidified an excess of dilute H ₂ SO ₄ . The resulting solution was found to react with the type of a 0.0200 mol dm ³ solution of KMnO ₄ .		
	In thi	is reaction, 5 mol of R react with 3 mol of KMnO ₄ . The M_r of R is		
	Α	120		
	В	167		

C

240

D 333 (Total 1 mark)

10. Which of the species given below can behave as ligands?

NH NH₃ NH

- A all three
- B only NH₃
- C NH₃ and NH
- **D** NH and NH₃

(Total 1 mark)