

TOPIC 13 HW MS

1.		(a)	Electron acceptor / gains electrons do not allow electron pair acceptor	
	(b)	Fe ²⁺	+ ions	1
		Fe ²⁺	/ Fe or Fe ²⁺ or it has smallest / most negative <u>electrode potential</u> / <u>E°</u> Do not allow Fe / Fe ²⁺ Cannot score M2 if M1 incorrect	1
	(c)	Pt H	I ₂ H+ Ag+ Ag M1 for H ₂ H+ Ag+ Ag in correct order	1
		allov 2H+	w dashed phase boundaries loses one mark (M2) M2 for Pt correct and correct phase boundaries Ignore state symbols. M1 must be correct to score M2 If answer correct but all in reverse order allow 1 mark out of two	1
		Any • •	two correct conditions 298 K / 25 °C 100 kPa both solutions of unit concentration zero current <i>Allow 1 bar; Do not apply list principle, mark</i> <i>correct answers</i>	1
	(d)	ΕA	u ⁺ (/ Au) > E O ₂ (/ H ₂ O) OR e.m.f. / <i>E</i> cell = 0.45 V If both species in electrode given, must be in correct order i.e. Au+ / Au	2
		<u>Au</u> +	(ions) oxidise water OR water reduces Au+ (ions) Allow water donates electrons to Au+	1
		<u>Gold</u> (oxy	<u>d</u> metal) solid / precipitate OR <u>bubbles</u> / effervescence of /gcn sas) / gas produced <i>Penalise incorrect observations</i>	1
		2Au	$ \qquad \rightarrow \qquad \rightarrow \qquad \qquad \rightarrow \qquad $	1
	(e)	(i)	1.24 (V) Do not allow 1.24	1
		(ii)	Chloride ions / Cl react with / form a precipitate with silver ions / Ag+ / form AgCl Penalise reaction of chloride ions with iron ions or iron	1

www.youtube.com/megalecture

1

MEGA LECTURE

	(f)	E O ₂ (/ H ₂ O) > E Fe ³⁺ (/ Fe ²⁺) (or e.m.f / <i>E</i> cell = 0.46 V) Species in electrode if all given must be in correct order					
		Therefore the <u>iron(II)</u> ions are oxidised (or converted) into <u>iron</u> ions (by oxygen) <i>If chloride ions oxidised to chlorine, lose M2</i> <i>M2 can be obtained or lost from equation.</i> <i>Ignore observations.</i>	<u>(III)</u>	1			
					[15]		
2.	(a)	Hydrogen ion concentration: 1.00 mol dm₃ (1) Hydrogen gas pressure: 100 kPa (1)					
	(b)	Explanation of change: Equilibrium displaced to left (1) to reduce constraint (1)	2				
		Change in electrode potential: Becomes negative or decrease allow more negative	s (1)				
	(c)	(i) 0.43V (1) (ii) Half-equation: 2Br- Br ₂ + 2e- (1) Overall equation: 2BrO ₃ - + 10Br- + 12H+ $6Br_2 + 6H_2O$ (2) or BrO ₃ - + 5Br- + 6H+ $3Br_2 + 3H_2O$	3 2)				
		species (1) balanced (1)	4		[9]		
3.	(a)	1.4 V \rightarrow <i>Allow</i> + <i>or</i> –	1				
	(b)	2NiO(OH) + 2H ₂ O + Cd 2Ni(OH) ₂ + Cd(OH) ₂ Mark for species, Deduct a mark for additional species	1				
		(eg OH-) but allow balance mark	1				
		Balanced If equation is reversed CE=0	1				
	(c)	NiO(OH) or Ni(III) or nickel					
		+3	1				
		Allow conseq on wrong species	1		[5]		
4.	(a)	loses electrons / donates electrons					
		penalise donates electron pair	1				
	(b)	Zn	1				

www.youtube.com/megalecture

WWW.MEGALECTURE.COM www.youtube.com/megalecture

MEGA LECTURE

(d)	(i)	order correct Zn Zn ²⁺ Ag ₂ O Ag or reverse of this order ignore ss , H+ and H ₂ O, no. of moles	1	
		 all phase boundaries correct allow Zn Zn²⁺ Ag₂O,Ag or Zn Zn²⁺ Ag₂O H+ Ag for M1 & M2 e.g. Zn Zn²⁺ Ag₂O Ag or Ag Ag₂O Zn²⁺ Zn scores 2 M2 cannot be gained unless M1 scored allow H+ either side of Ag₂O with comma or for M2 penalise wrong phase boundary (allow dashed lines for salt bridge) Pt use of + (from half equation) water/H+ outside Ag in Ag electrode 	1	
	(ii)		1	
	(11)	Allow no units, penalise wrong units allow correct answer even if no answer to (d)(i) or answer to (d)(i) incorrect allow –1.1 if silver electrode on Left in (d)(i) even if the species are in the wrong order.		
	(iii)	<u>Reaction(s</u>) not reversible or H ₂ O electrolyses do not allow hard to reverse mention of primary cell is not enough to show that reaction(s) are irreversible	1	
(e)	(i)	–0.46 (V) → Allow no units, penalise wrong units	1	
	(ii)	$2PbSO_4 + 2H_2O$ Pb $+PbO_2 + 2HSO_{4^-} + 2H_{1^+}$	1	
		equation balanced and includes H_2O ,	1	
		HSO₄- and H+ (or H₂SO₄) allow ions / species must be fully cancelled out or combined		
		allow 1/2 for balanced reverse equation	1	
(f)	(i)	reagents / PbO₂ / H₂SO₄ /acid / ions used up (or concentration decreases)		
	(ii)	fuel cell	1	
		Ignore any other words	1	
	(iii)	reagents / fuel supplied continuously	1	
		concentrations (of reagents) remain constant	-	
			I	[17]

www.youtube.com/megalecture

MEGA LECTURE

[1]

[1]

- **5.** B
- **6.** C
- 7. C
- 8. D [1]

www.megalecture.com

www.youtube.com/megalecture