MEGA LECTURE

TOPIC 13 HW MS

1. (a) (i) 0.60 V
(ii) $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{SO}_{4}^{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
(b) (i) $2 \mathrm{O}_{3}^{-}+2 \mathrm{H}^{+} 5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 5 \mathrm{O}_{2}+\mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O} \quad$ Species

Balanced
(ii) The concentration of the ions change or are no longer standard or
the e.m.f is determined when no current flows
(iii) Unchanged
(iv) Increased

Equilibrium $\mathrm{IO}_{3}^{-} / \mathrm{I}_{2}$ displaced to the right
Electrons more readily accepted or more ediuction occurs or electrode becomes more positive ($Q \& L$)
(c) VO_{2}^{+}

5 or V
$\mathrm{V}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{VO}_{2}^{+}+4 \mathrm{H}^{+} 3 \mathrm{e}^{-}$
2. (a) (Standard) hydrogen (electrode) (1)
(b) (i) To allow transfer of electrons / provide a reaction surface (1)
(ii) 298 Kíi)

Both $\mathrm{F}^{3+}(\mathrm{aq})$ and $\mathrm{Fe}^{2+}(\mathrm{aq})$ have a concentration of 1
Mol dm^{-3} (1) (QoL)
OR $\left[\mathrm{H}^{+}\right]=1 \mathrm{~mol} \mathrm{dm}^{-3}$
NOT zero current or 100 kPa
(c) $\quad+1.34 \mathrm{~V}$ (1)
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{SO}_{3} \quad 2 \mathrm{Mn}^{2+}+5 \mathrm{SO}_{4}{ }^{2-}+3 \mathrm{H}_{2} \mathrm{O}_{\rightarrow}+4 \mathrm{H}^{+}$
Correct species / order (1)
Balanced and cancelled (1)
Allow one for $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{SO}_{3} \quad 2 \mathrm{Mn}^{2+}+5$
$\mathrm{SO}_{4}{ }^{2-}$
(d) (i) $\mathrm{Ce}^{4+}(\mathrm{aq})$ (1)
(ii) $\mathrm{VO}_{2^{+}}(\mathrm{aq})(\mathbf{1}) ; \mathrm{Cl}_{2}(\mathbf{1})$

Penalise additional answers to zero
(e) $\mathrm{Pt}\left|\mathrm{Fe}^{2+}(\mathrm{aq}), \mathrm{Fe}^{3+}(\mathrm{aq}) \| \mathrm{Ce}^{4+}(\mathrm{aq}), \mathrm{Ce}^{3+}(\mathrm{aq})\right| \mathrm{Pt}$

Correct species (1)
Correct order (1)
Deduct one mark for each error
3. (a) $\mathrm{Pt}\left|\mathrm{H}_{2}\right| \mathrm{H}_{+}| | \mathrm{Fe}^{2+} \mid \mathrm{Fe}$

Allow 1 for correct order of symbols but lose second mark for a wrong phase boundary(s) / Pt missing / extra Pt on RHS, additional phase boundary
Note, allow one mark only for correct symbol in reverse:
$\mathrm{Fe}\left|\mathrm{Fe}^{2+}\right|\left|\mathrm{H}+\left|\mathrm{H}_{2}\right| \mathrm{Pt}\right.$
Allow dashed lines for salt bridge
Ignore state symbols
Ignore 2 if used before H^{+}
(b) Electron donor

Allow (species that) loses electrons
Do not allow reference to electron pairs
(c) $\mathrm{Cl}_{2} /$ chlorine

If M1 blank or incorrect cannot score M2
(Species on RHS / electron donor) has most positive / largest E ${ }^{1}$ / has highest potential

Do not allow reference to e.m.f. or E (cell)
(d) (i) $\mathrm{Cl} /$ chlorine
(ii) Chlorine +1 to chlorine 0

CE if chlorine not identified in part (i)
Allow chlorine +1 to chlorine -1 (in Cl -)
Allow oxidation state decreases by one OR two
Allow oxidation state changes by -1 OR -2
(e) $4 \mathrm{HOCl}+4 \mathrm{H}^{+}+4 \mathrm{OH} \quad 2 \mathrm{Cl}_{2}+\mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

OR
$4 \mathrm{HOCl} \quad 2 \mathrm{Cl}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Allow one mark for any incorrect equation that shows
$\mathrm{HOCl} \quad \mathrm{Cl}_{2}+\mathrm{O}_{2}$
Allow multiples
Ignore state symbols
Penalise one mark for uncancelled or uncombined species (eg $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ instead of $2 \mathrm{H}_{2} \mathrm{O}$)
(f) (i) e.m.f. $=0.40-(-1.25)=\underline{1.65}(\mathrm{~V}) /+1.65(\mathrm{~V})$

Allow - 1.65 (V)
(ii) $2 \mathrm{Zn}+\mathrm{O}_{2} \quad 2 \mathrm{ZnO}$

Allow multiples
Ignore state symbols
Do not allow uncancelled species If more than one equation given, choose the best
(iii) A/stainless lid

If M1 incorrect or blank CE =0 $\underline{\mathrm{O}}_{2}$ (electrode) has a more positive $\mathrm{E} \oplus$ / oxygen (electrode) requires / gains electrons from external circuit

Or reference to the overall equation and a link
to electrons going into A
Allow oxygen is reduced and reduction occur.
at the positive electrode
OR Zinc (electrode) has more negative E^{\ominus}
Do not allow reference to e.m.f. or E(sell)
1
(iv) (Cell) reaction(s) cannot be reversed/2inc oxide cannot be reduced to zinc by passing a current tiprough it / zinc cannot be regenerated

Allow danger from prodyction of gas / oxygen produced / hydrogen nrodaced
4. (a) $\mathrm{H}_{2} \mathrm{O}_{2}$

Ignore statesynbols
(b) $\mathrm{E} \quad \mathrm{Cl}_{2} / \mathrm{Cl}->\mathrm{E} \quad \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$

Allow potential for chlorine/ Cl_{2} greater than for oxygen/O
Nillow $1.36>1.23 /$ E cell $=0.13$
$\mathrm{Cl}_{2}+\mathrm{H} \rightarrow 2 \mathrm{Cl}+1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{2}$
Allow multiples
Allow +HCl
1
(c) Activation energy is high / light/UV provides the activation energy / light breaks
chlorine molecule / Cl-Cl bond
If light used to break $\mathrm{Cl}-\mathrm{Cl}$ bond award 1 mark and ignore product e.g. Cl
(d) $\underline{\mathrm{O}}(-1)\left(\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}_{2}\right)$

Must give oxidation state of O in $\mathrm{H}_{2} \mathrm{O}_{2}=-1$
Changes to $\underline{\mathrm{O}(-2)}$ (in water)

Must give oxidation state of 0 in water $=-2$
$C E=0 / 2$ if refers to oxidation state of H changing
(e) $\mathrm{E} \quad \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}>\mathrm{E} \quad \mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}_{2}$

Allow stated in words
Allow $1.77>0.68 / \mathrm{E}$ cell $=1.09$
$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Allow multiples
$\mathrm{H}+$ and e- must be cancelled
5. (a) (i) Fe^{2+}
(ii) $\mathrm{F}_{2} \mathrm{O}$
(iii) Fe^{2+}

Cl
Use list principle if more than two answers
(b) (i) e.m.f. $=E$ (rhs) $-E$ (lhs)
$=1.52-0.77=0.75$
(0.75 scores first mark also)
(ii) $\mathrm{Fe}^{2+} \quad \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
(iii) Decrease
(Increase is CE, no further marks)
Equilibrium (or reaction) shifts to R (or L if refers to half equation in table)
(or in favour of more Fe^{3+})
(or more Fe^{3+} formed)
(or more electrons formed)
Electrode potential (for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$) less positive (ordecreases)

[10]

6. (a) (i) Co/Cobalt

If Co or Cobalt not given $\mathrm{CE}=0$ ignore case in symbol for Co
(+) 4
$(+)-3$ Allow 4 and 3 in either order
(ii) $\mathrm{Li} \mathrm{Li}++\mathrm{e}^{-}$

Ignore state symbols

Allow e without -ve sign
Do not allow equilibrium sign
(iii) Platinum is a conductor
(Platinum is) unreactive/inert
Ignore mention of surface area or catalyst Allow 2 marks if two properties given on one answer line
Apply list principle to contradictions/wrong answers
Do not allow platinum resists corrosion
(iv) Li reacts with water/forms lithium hydroxide

Allow water breaks down (or is electrolysed) on re-charge
(b) (i) $\quad \mathrm{Pt}\left|\mathrm{SO}_{3^{2-}}(\mathrm{aq}), \mathrm{SO}_{4^{2^{-}}}(\mathrm{aq})\right|\left|\mathrm{ClO}_{3^{-}}(\mathrm{aq}), \mathrm{Cl}-(\mathrm{aq})\right| \mathrm{Pt}$

State symbols an ',' not necessary Allow | in place of ',' NOT ',' in place of | Ignore $\mathrm{H}+$ and $\mathrm{H}_{2} \mathrm{O}$
Deduct one mark for each mistake (e.g. Pt
missed twice counts as two mistakes)
Allow reverse order for whole cell
$\mathrm{Pt}\left|\mathrm{Cl}, \mathrm{ClO}_{3^{-}}\right|\left|\mathrm{SO}_{4^{-2}}, \mathrm{SO}_{3^{2-}}\right| \mathrm{Pt}$
(ii) $\quad \mathrm{ClO}_{3^{-}}+3 \mathrm{SO}_{3^{2-}} \quad \mathrm{Cl}+3 \mathrm{SO}_{4^{2-}}$

Oxidising agent $\mathrm{ClO}_{3}-$
Reducing agent $\mathrm{SO}_{3}{ }^{2-}$
7. (a) By definition
allow 'set to this value'
(b) 1.23 V
Allow + or -
(c) $\quad \mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{OH}-(\mathrm{aq}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})| | \mathrm{O}_{2}(\mathrm{~g})\left|\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \mathrm{OH}-(\mathrm{aq})\right| \mathrm{Pt}$
$\mathrm{H}_{2} \mathrm{O}$ not essential, allow reverse order
Correct but with Pt missing
\rightarrow
1
Includes Pt with correct representation
(d) Uses $\mathrm{O}_{2} \neq 2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}-\quad 4 \mathrm{OH}-$

And (2x) $2 \mathrm{OH}-+\mathrm{H}_{2} \quad 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}-$
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \quad 2 \mathrm{H}_{2} \mathrm{O}$
(e) Increases the surface area (so reaction faster)
(f) Overall reaction is the same $\left(2 \mathrm{H}_{2}+\mathrm{O}_{2} \quad 2 \mathrm{H}_{2} \mathrm{O}\right)$

Or shows e.m.f. is the same
(g) Hydrogen and oxygen supplied continuously

OR

Can be operated without stopping to recharge
Or can be refuelled quickly Allow any one mark
(h) Hydrogen may need to be made using an energy source that is not 'carbon neutral'
8. D
9. D

