

TOPIC 13 HW MS

1.	(a)	(i)	0.60 V		
		(iii)	H ₂ O + H ₂ SO ₃ →SO ² ₄ + 4H ⁺ + 2e ⁻	1	
		(11)		1	
	(b)	(i)	$2\mathrm{IO}_3^-+2\mathrm{H}^+5\mathrm{H}_2\mathrm{O}_2\!\rightarrow\!5\mathrm{O}_2+\mathrm{I}_2\!+\!6\mathrm{H}_2\mathrm{O}$	Species	
			Balanced	1	
		(ii)	ii) The concentration of the ions change or are no longer sta		
			the e.m.f is determined when no current flo	WS 1	
		(iii)	Unchanged		
		(iv)	Increased		
			Equilibrium IO_3^-/I_2 displaced to the right		
			Electrons more readily accepted or more of electrone becomes more positive (Cod	aduction occurs	
		VO		1	
	(C)	vo		1	
		5 or	v _v õ	1	
V ²	* + 2H	20→`	VO2 + 4H+ 3e-	1 [12	
2.	(a)	(Stand	dard) hydrogen (eiectrode) (1)	1	
	(b)	(i) (ii)	To allow transfer of electrons / provide a re 298 K (*) <u>Both F³+ (aq) and Fe₂+ (aq)</u> have a concentr nol dm-3 (1) (QoL) OR [H+] = 1 mol dm-3 <i>NOT zero current or 100 kPa</i>	eaction surface (1) ation of 1	
	(c)	+1.3 2 Mr Corr Bala	84 V (1) nO₄ ⁻ + 5 H₂SO₃ 2 Mn ²⁺ + 5 SO₄ ²⁻ + 3 H₂Q,+4 rect species / order (1) anced and cancelled (1) <i>Allow one for 2 MnO₄⁻</i> + 5 H₂SO₃ 2 SO₄ ²⁻	- H H+ Mn²+ + 5	
	(d)	(i) (ii)	Ce4+ (aq) (1) VO ₂ + (aq) (1) ; Cl ₂ (1) <i>Penalise additional answers to zero</i>	3	
			1		

www.youtube.com/megalecture

Page 1 of 7

MEGA LECTURE

			2	
	(e)	Pt Fe²+ (aq), Fe³+ (aq) Ce⁴+(aq), Ce³+ (aq) Pt Correct species (1) Correct order (1)	3	
		Deduct one mark for each error	2	[12]
3.	(a)	Pt H ₂ H+ Fe ²⁺ Fe Allow 1 for correct order of symbols but lose second mark for a wrong phase boundary(s) / Pt missing / extra Pt on RHS, additional phase boundary Note, allow one mark only for correct symbol in reverse: Fe Fe ²⁺ H+ H ₂ Pt Allow dashed lines for salt bridge Ignore state symbols Ignore 2 if used before H+		
			2	
	(b)	Electron donor Allow (species that) loses electrons Do not allow reference to electron pairs		
	(c)	Cl₂ / chlorine If M1 blank or incorrect cannot score M2	1	
		(Species on RHS / electron donor) has most positive / largest <i>E</i> / has highest potential <i>Do not allow reference to e.m.f. or E(cell)</i>	=	
	(d)	(i) Cl / chlorine	1	
	()		1	
		 (ii) Chlorine +1 to chlorine 0 CE if chlorine not identified in part (i) Allow chlorine +1 to chlorine -1 (in Cl-) Allow oxidation state decreases by one OR two Allow oxidation state changes by -1 OR -2 	1	
	(e)	$\overrightarrow{HOCI} + \overrightarrow{4H^{+}} + 4OH^{-} 2CI_2 + O_2 + 6H_2O$ OR	1	
		4HOCI $2CI_2 + O_{2,2} + 2H_2O$ Allow one mark for any incorrect equation that shows HOCI $CI_2 + O_2$ Allow multiples Ignore state symbols Penalise one mark for uncancelled or uncombined species (eg $H_2O + H_2O$ instead of $2H_2O$)	2	

www.youtube.com/megalecture

4.

MEGA LECTURE e.m.f. = 0.40 - (-1.25) = <u>1.65</u> (V) / <u>+1.65</u> (V) (f) (i) Allow -1.65 (V) 1 2Zn + O₂ (ii) 2ZnO Allow multiples Ignore state symbols Do not allow uncancelled species If more than one equation given, choose the best 1 A / stainless lid (iii) If M1 incorrect or blank CE=0 \underline{O}_2 (electrode) has a more positive *E* / <u>oxygen</u> (electrode) requires / gains electrons from external circuit Or reference to the overall equation and a link to electrons going into A Allow oxygen is reduced and reduction occurs at the positive electrode OR Zinc (electrode) has more negative E Do not allow reference to e.m.f. or E(cell) (iv) (Cell) reaction(s) cannot be reversed /2 inc oxide cannot be reduced to zinc by passing a current through it / zinc cannot be regenerated Allow danger from production of gas / oxygen produced / hydrogen produced 1 [14] (a) H_2O_2 Ignore state symbols 1 (b) $E \operatorname{Cl}_2/\operatorname{Cl}_2 > E \operatorname{Cl}_2/\operatorname{Pl}_2 C$ Allow potential for chlorine/Cl₂ greater than for oxygen/O₂ Viow 1.36 > 1.23 / E cell = 0.13 1 2CI- + 1/2O₂ + 2H+ Allow multiples Allow + HCl Activation energy is high / light/UV provides the activation energy / light (c) breaks chlorine molecule / CI-CI bond If light used to break CI–CI bond award 1 mark and ignore product e.g. Cl-1 (d) <u>O</u> (-1) (in H_2O_2) Must give oxidation state of O in $H_2O_2 = -1$ 1 Changes to O(-2) (in water)

3

WWW.MEGALECTURE.COM www.youtube.com/megalecture

MEGA LECTURE

Must give oxidation state of O in water = -2CE = 0/2 if refers to oxidation state of H changing

- (e) $E H_2O_2/H_2O > E O_2/H_2O_2$ Allow stated in words Allow 1.77 > 0.68 / E cell = 1.09 $2H_2O_2 \longrightarrow O_2 + 2H_2O$ 1
 - Allow multiples H₁ and e- must be cancelled

5.

(b)

- (a) (i) Fe₂+
 (ii) F₂O
 - (iii) Fe²⁺ Cl-
 - Use list principle if more than two answers (i) e.m.f. = E(rhs) - E(lhs)
 - = 1.52 0.77 = 0.75 (0.75 scores first mark also)
 - (ii) Fe²⁺ Fe³⁺ + e⁻
 (iii) Decrease *(Increase is CE, no further marks)*
 - Equilibrium (or reaction) shifts to R (or L if refers to half equation in table) (or in favour of more Fe³⁺) (or more Fe³⁺ formed) (or more electrons formed)

Electrode potential (for Fe³⁺/Fe²⁺) less positive (or decreases)

[10]

1

1

1

1

1

1

1

1

1

1

1

1

[8]

- (a) (i) Co/Cobalt
 If Co or Cobalt not given CE = 0
 ignore case in symbol for Co
 (+) 4
 - (+)-3 Allow 4 and 3 in either order
 - (ii) Li Li+ + e-Ignore state symbols

www.youtube.com/megalecture

Page 4 of 7

www.youtube.com/megalecture

WWW.MEGALECTURE.COM

MEGA LECTURE

	(b)	 (i) Pt SO_{3²⁻} (aq), SO_{4²⁻} (aq) ClO₃- (aq), Cl-(aq) Pt State symbols an ',' not necessary Allow in place of ',' NOT ',' in place of Ignore H+ and H₂O Deduct one mark for each mistake (e.g. Pt missed twice counts as two mistakes) Allow reverse order for whole cell Pt Cl-, ClO₃- SO_{4²⁻}. SO_{4²⁻} Pt 	
		(ii) $CIO_{3^{-}} + 3SO_{3^{2^{-}}} CI_{-} + 3SO_{4^{2^{-}}}$	
		1 Oxidising agent CIO₃-	
		1 Reducing agent SO ₄₂ -	
		1	[12]
7.	(a)	By definition allow 'set to this value'	
	(b)	1.23 V	
		Allow + or –	
	(c)	Pt H₂(g) OH-(aq),H₂O(I) O₂(g) H₂O(I),OH-(aq) Pt H₂O not essential, allow reverse order Correct but with Pt missing	
		Includes Pt with correct representation	
	(d)	$1 \\ Uses O_2 \Rightarrow 2H_2O + 4e^- 4OH^- \\ And (2x) 2OH^- + H_2 2H_2O + 2e^- \\ \end{array}$	
		$2H_2 + O_2 = 2H_2O$	
	(e)	$\xrightarrow{\rightarrow} 1$ Increases the surface area (so reaction faster)	
	(f)	Overall reaction is the same $(2H_2 + O_2 2H_2O)$ Or shows e.m.f. is the same	
	(g)	Hydrogen and oxygen supplied continuously	
		<i>OR</i> Can be operated without stopping to recharge Or can be refuelled quickly Allow any one mark	
	(h)	1 Hydrogen may need to be made using an energy source that is	
		not 'carbon neutral'	
			[10]
8.	D		[1]
9.	D		
		6	

www.youtube.com/megalecture

Page 6 of 7

[1]

www.megalecture.com

Page 7 of 7