TOPIC 12 TEST MS

1. (a) $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is very high (compared with $\left[\mathrm{H}^{+}\right]$and $[\mathrm{OH}]$)

OR
Very few H^{+}and OH ions
OR
Only / very slightly dissociates

OR

Equilibrium lies far to the left
Not partially dissociates
M1
1
[$\mathrm{H}_{2} \mathrm{O}$] is (effectively) constant
OR is incorporated into the constant K Allow changes by only a very small amount

M2
(b) (Dissociation OR breaking bonds) is endothermic

Equilibrium moves to RHS (at higer T) to absorb heat or to lower T or oppose increase in T

Allow to oppose Chiange only if increase T
$\sqrt{ }$ mentioned
(c) $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}}\left(\mathrm{or}=5.548 \times 10{ }^{14}\right)$

Corrsctph answer scores 3

If wirchg method no marks
Using alternative $\mathrm{K}_{\mathrm{w}}\left(1.00 \times 10{ }^{14}\right)$ gives $\mathrm{pH}=$ 7.00 which scores 1

$$
=2.34 \times 10^{7}
$$

$\mathrm{pH}=6.63$
Final answer must have 2dp
(d) $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /[\mathrm{OH}]$ or $\left(=5.48 \times 10{ }^{14} / 0.12\right)$

Correct pH answer scores 3

If wrong method no marks
If use alternative $\mathrm{K}_{\mathrm{w}}\left(1.00 \times 10{ }^{14}\right)$ again, do not penalise-repeat error so $\mathrm{pH}=13.08$ scores 3
$=4.566 \times 10^{13}$

$$
\mathrm{pH}=12.34
$$

If use alternative $K_{w}\left(1.00 \times 10{ }^{14}\right)$ not as a repeat error, $\mathrm{pH}=13.08$ scores 1
If $A E$ in K_{w} value made in part (c) is repeated here, do not penalise again.
Final answer must have $2 d p$, but if dp penalised in (c) allow more than 2 dp here but not fewer.

1
2. (a) $\quad-\log \left[\mathrm{H}^{+}\right]$
ecf if [] wrong and already penalised
4.57×10^{-3}
allow 4.6×10^{-3}
ignore units
$\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$
(b) (i) $\mathrm{K}_{\mathrm{a}}=$
allow HA etc
$\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}$ but mark on
If expression wrong allow conseq units in (ii) but no other marks in (ii)

$$
\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]} \frac{\left(4.57 \times 10^{-3}\right)^{2}}{[0.150]}
$$

(ii)
$=$
If use 4.6×10^{-3}
$\mathrm{K}_{\mathrm{a}}=1.4(1) \times 10^{-4}$ and $\mathrm{pKa}=3.85$
$=1.39 \times 10^{-4}$
allow 1.39-1.41×10-4 mol dm-3
[10]
(iii) $\mathrm{pK}_{\mathrm{a}}=3.86$

Penalise dp of final answer <or > 2 in pH once in paper
$\frac{30}{1000}$
(c) (i) $\quad \times 0.480=0.0144$ or $1.4(4) \times 10^{-2}$
Mark is for answer (M1)
$\frac{18}{1000}$
(ii) $\quad \times 0.350=0.0063$ or 6.3×10^{-3}
Mark is for answer (M2)
(iii) $0.0144-2(0.0063)=1.80 \times 10^{-3}$

M3 is for (i) - 2(ii)
If $x 2$ missed, CE i.e. lose M3 and the next mark gained
(iv) $1.80 \times 10^{-3} \times=0.0375(0.038)$

M4 is for answer
If vol is not 48×10^{-3} (unless AE) lose M4 and next mark gained If multiply by 48 - this is AE - i.e. lose only M4
If multiply by 48×10^{-3} this is AE - i.e. lose only M4

1
(v) $\quad 10-14 / 0.0375 \quad(10-14 / 0.038)$

M5 for $\mathrm{K}_{\mathrm{w}} /[\mathrm{OH}-]$
1

$$
\begin{aligned}
& \left(=2.66 \times 10^{-13}\right) \quad\left(=2.63 \times 10^{-13}\right) \\
& \quad \text { or pOH }
\end{aligned}
$$

or $\mathrm{pOH}=1.426 \quad$ (or $\mathrm{pOH}=1.420$)
If no attempt to use $\mathrm{K}_{\text {w }}$ or pOH lose both M5 and M6
$\mathrm{pH}=12.57 \quad$ (12.58) M6
Allow M6 conseq on AE in M5 if method OK
$\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
3. (a) $\mathrm{K}_{\mathrm{a}}=$
(All three sets of square brackets needed, penalise missing brackets or missing charge once in the question)
(Don't penalise extra $[\mathrm{H}+]^{2} /[\mathrm{HA}]$)

$$
\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]}
$$

(b) $\mathrm{K}_{\mathrm{a}}=\quad$ or $\left[\mathrm{H}^{2}\right]=[\mathrm{A}]$ $\sqrt{\left(1.45 \times 10^{-4}\right) \times 0.25}$
$[\mathrm{H}+]=$

$$
=6.02 \times 10-\mathrm{spH}=2.22
$$

(must be to 2 dp)
(allow 4th mark consequential on their $[\mathrm{H}+]$
(c) (i) pH (almost) unchanged
(Must be correct to score explarnation)
$\mathrm{H}+$ removed by A - forming HA or acid reacts with salt or more HA formed
(ii) $\left[\mathrm{H}_{+}\right]=10^{-3.59}=2.57 \times 10^{-4}$ or 2.6×10^{-4}

$[A-]$,

$$
\frac{\left(1.45 \times 10^{-4}\right] \times 0.25}{2.57 \times 10^{-4}}
$$

$$
\begin{equation*}
= \tag{1}
\end{equation*}
$$

$=0.141\left(\mathrm{~mol} \mathrm{dm}^{3}\right)$
(Allow 0.139 to 0.141 and allow 0.14)
(If not used 3.59 , to find $[\mathrm{H}+]$ can only score M2 for working)
(If 3.59 used but $[\mathrm{H}+]$ is wrong, can score M 2 for correct method and conseq M4)
If wrong method and wrong expression, can only score M1)
(ii) Alternative scheme for first three marks of part (c)(ii)
$\frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \quad \log$

$$
\mathrm{pK}_{\mathrm{a}}=3.84
$$

$$
3.59=3.84-\log
$$

4. (a) (i) B;

$$
\frac{0.250}{\left[\mathrm{~A}^{-}\right]}
$$

$\left[\mathrm{OH}^{-}\right]=\frac{10^{-14}}{1.258 \times 10^{-12}}$
OR
$=2.10$;
$=7.9(4) \times 10^{-3}$;
(if $\left[\mathrm{H}^{+}\right]$is wrong allow 1 for $[\mathrm{OH}]=\mathrm{K}_{\mathrm{w}} /[\mathrm{H}+]$ or as numbers)
(c) (i) $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]$

OR
$[\mathrm{H}+]^{2} /[\mathrm{HA}]$
OR
$\left[H^{+}\right]=\left[A_{y}\right]$ etc;
$\left[H^{+}\right]=1.35 \times 10-5 \times 0.117$ or expression without numbers;
$=1.257 \times 10^{-3}$
$\mathrm{pH}=2.9 \underline{0} ;$
1
(ii) $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]$

OR
$\mathrm{pK}_{\mathrm{a}}=\mathrm{pH} ;$
$\mathrm{pH}=4.8 \underline{7}$;
(penalise 1dp once)
5. B
6. B
7. C

