TOPIC $\mathbf{1 2}$ HW MS

1. (a) Any two from:

Weigh by difference or rinse weighing bottle and add to beaker
Rinse beaker and add washings to graduated flask
Invert flask several times to ensure uniform solution
Use a funnel to transfer to the flask and rinse the funnel
Use a stirrer to prepare the solution and rinse the stirrer
If more than two answers apply the list rule.

Max 2

(b) $\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} /[\mathrm{HA}]$

Allow any correct expression relating $\mathrm{K}_{\mathrm{a}},\left[{ }_{[1-1}\right.$] and [HA]
$[H A]=\left(10^{-2.50}\right)^{2} / 1.07 \times 10^{-3}$
M2 also scores M1
$=9.35 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
Do not allow 9.4 (answer is 9.346).
Correct answeronly scores 1 mark.
Do not penalise precision but must be to at least two signiîicant figures.
(c) \quad (b) $\times 138.0 / 2$

Using 8.50×10^{-3} gives 0.293
Correct answer scores M1 and M2.
Do not penalise precision but must be to at least two significant figures.
(d) (c) $\times 100 / 0.500=64.5 \%$

Using 0.293 from (c) gives 58.7\%
Using 0.347 gives 69.4\%
Do not penalise precision.

1
2.
(a) (i) $-\log \left[\mathrm{H}^{+}\right]$

Penalise missing [] here and not elsewhere
(ii) $\left[\mathrm{H}^{+}\right][\mathrm{OH}-]$
(b) (i) $\left[\mathrm{H}^{+}\right]=2.34 \times 10^{-7}$

$$
\mathrm{pH}=6.63
$$

Penalise fewer than 3 sig figs but allow more than 2 dp
(ii) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
(iii) M1 $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{w} /\left[\mathrm{OH}^{-}\right]$
if upside down or CE, allow M3 only for correct use of their $[\mathrm{H}+]$

M2 $\left(=5.48 \times 10^{-14} / 0.140\right)=3 . Q 1 \times 10^{-13}$

M3 $\mathrm{pH}=12.4(1)$
not 12.40 (AE from 22.407)
Penalise fever than 3 sig figs but allow more than 3 sfs
For values above 10, allow 3sfs - do not insist on 2 d .
Eor values below 1, allow 2 dp - do not insist on Sig figs
Not allow pH = $14-\mathrm{pOH}$ but can award M3 only for $\mathrm{pH}=13.1$ (46)
Can award all three marks if $\mathrm{pK}_{w}=13.26$ is used
(c) $\quad \mathbf{M 1} \mathrm{mol} \mathrm{NaOH}=\mathrm{mol} \mathrm{OH}^{-}=\left(30 \times 10^{-3}\right) \times 0.20=6.0 \times 10^{-3}$ mark for answer

M5 $\quad\left[\mathrm{H}^{+}\right]=\left(1.5 \times 10^{-3}\right) \times(1000 / 55)=0.0273$
if no use or wrong use of volume, lose M5 and M6 except if 1000 missed AE-1 (pH = 4.56)

M6 $\mathrm{pH}=1.56$
Penalise fewer than 3 sig figs but allow more than 3 sfs
For values above 10, allow 3sfs - do not insist on 2 dp .
For values below 1, allow 2 dp - do not insist on 3 sig figs
3. (a) Proton donor or $\mathrm{H}+$ donor

Allow donator
(b) (i) $\mathrm{B} B$

Both need to be correct to score the mark
(ii) AA

Both need to be correct to score the mark
(iii) B A

Both need to be correct to score the mark
(c) M1 $\left[\mathrm{H}_{+}\right]=10^{-1.25}$ OR 0.05623

1
M2 $\mathrm{mol} \mathrm{HCl}=\left(25 \times 10^{-3}\right) \times 0.0850\left(=2.125 \times 10^{-3}\right)$
Mark for W orking

$$
\left(=\frac{2.125 \times 10^{-3}}{0.05623}\right)
$$

M3 vol
$=0.0378 \mathrm{dm}^{3}$ or $37.8 \mathrm{~cm}^{3}$
allow $0.0375-0.038 \mathrm{dm}^{3}$ or $37.5-38 \mathrm{~cm}^{3}$
Units and answer tied
Lose M3 if total given as $(25+37.8)=62.8 \mathrm{~cm}^{3}$
Ignore "vol added $=12.8 \mathrm{~cm}^{3}$ " after correct answer
(d) (i) 4.52

Must be 2dp
1

(ii) $\mathrm{K}_{\mathrm{a}}=$
ignore = but this may score M1 in (d)(iii)
Must have all brackets but allow () Allow HA etc
NO mark for 10 - -pa

(iii) M1 $\mathrm{K}_{\mathrm{a}}=\quad$ or with numbers

Allow $\left[\mathrm{H}^{+}\right]=(\mathrm{Ka} \times[\mathrm{HA}])$ for $\mathrm{M} \boxtimes$

M2 $\quad\left[\mathrm{H}^{+}\right]=\left(\left(3.01 \times 10^{-5} \times 0.174\right)=\left(5.24 \times 10^{-6}\right)\right)$
$=2.29 \times 10^{-3}-2.3 \times 10^{-3}$
Mark for answer
1

M3 $\mathrm{pH}=2.64 \quad$ (allow more than 2dp but not fewer)
Allow 1 for correct pH from their wrong [$\mathrm{H}+$]
If square root forgotten, $\mathrm{pH}=5.28$ scores 2 for M1 and M3
(e) $\quad \mathrm{M} 1 \mathrm{~mol} \mathrm{OH}-=\left(10.0 \times 10^{-3}\right) \times 0.125=1.25 \times 10^{-3}$

Mark for answer

M2 orig mol HX $=\left(15.0 \times 10^{-3}\right) \times 0.174=2.61 \times 10 \times 3$ Mark for answer

M3 mol HX in buffer $=$ orig mol HX $-\mathrm{mol} \mathrm{OH}-$
Mark for answer

$$
=2.61 \times 10^{-3}-1.25 \times 10^{-3}=1.36 \times 10^{-3}
$$

Allow conseq on their (M2-M1)
$\left([H X]=1.36 \times 10^{-3} / 25 \times 10^{-3}=0.0544\right)$
If no subtraction, $\max 3$ for $M 1, M 2 \& M 4(\mathrm{pH}=$ 4.20)

If $[\mathrm{H}+]=[\mathrm{X}-]$ \& used, $\max 3$ for M1, M2 \& M3
($\mathrm{pH}=2.89$)

M4 mol X-in buffer $=\mathrm{mol} \mathrm{OH}^{-}=1.25 \times 10^{-3}$

$$
\left([\mathrm{X}-]=1.25 \times 10^{-3} / 25 \times 10^{-3}=0.05\right)
$$

May be scored in M5 ex.pression

$$
\left(=\frac{\mathrm{Ka} \times[\mathrm{HX}]}{\left[\mathrm{X}^{-}\right]}\right)
$$

M5 [H^{+}]

$$
\frac{360 \pi 10^{-5} \times 1.36 \times 10^{-3}}{1.25 \times 10^{-3}} \quad \frac{3.01 \times 10^{-5} \times 0.0544}{0.05}
$$

OR

$$
\left(=3.27 \times 10^{-5}\right)
$$

If either value of HX or X - used wrongly or expression upside down, no further marks

M6 $\mathrm{pH}=4.48$ or 4.49 (allow more than 2dp but not fewer)
Do not allow M6 for correct calculation of pH using their $\left[\mathrm{H}^{+}\right]$- this only applies in (d)(iii) apart from earlier AE

$$
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

4. (a) before any KOH added: $\mathrm{K}_{\mathrm{a}}=$
or
(1)
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
$\left[\mathrm{H}_{+}\right]=\sqrt{1.74 \times 10^{-5} \times 0.160}=1.67 \times 10^{-3}$ (1)
$\mathrm{pH}=2.78$ (1)
$\mathrm{pH}=2.78$ (1)
(b) at $8 \mathrm{~cm}^{3} \mathrm{KOH}$:

Moles KOH added $=\left(8 \times 10^{-3}\right) \times 0.210=1.68 \times 10^{-3}(\mathbf{1})$
.: moles of $\mathrm{CH}_{3} \mathrm{COO}$ - formed $=1.68 \times 10^{-3} \mathbf{(1)}$
Original moles of $\mathrm{CH}_{3} \mathrm{COOH}=\left(25 \times 10^{-3}\right) \times 0.160=4.0 \times 10^{-3} \mathbf{(1)}$

$$
\text { moles of } \mathrm{CH}_{3} \mathrm{COOH} \text { left }=\left(4.0 \times 10^{-3}\right)-\left(1.68 \times 10^{-3}\right)
$$

$$
=2.32 \times 10^{-3} \mathbf{(1)}
$$

$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
$\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \times$
$=1.74 \times 10^{-5} \times \frac{\frac{2.32 \times 10^{-3} / V}{1.68 \times 10^{-3} / V}}{}=2.40 \times 10^{-5}$ (1)
$\mathrm{pH}=4.62$ (1)
It forget subtraction : max 5 If K_{a} expression not used max 5 if moles of $\mathrm{CH}_{3} \mathrm{COOH}$ wrong but substitution used max 5
(c) at $40 \mathrm{~cm}^{3}$ of KOH :

Total moles of $\mathrm{KOH}=\left(40 \times 10^{-3}\right) \times 0.21=8.4 \times 10^{-3}(\mathbf{1})$
\therefore excess moles of $\mathrm{KOH}=\left(8.4 \times 10^{-3}\right)-\left(4.0 \times 10^{-3}\right)$

$$
=4.4 \times 10^{-3} \mathbf{(1)}
$$

in total volume $=40+25=65 \mathrm{~cm}^{3}$ (1)

$$
\begin{equation*}
[\mathrm{OH}-]=4.4 \times 10^{-3} \times \frac{1000}{65}=0.0677 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \therefore[\mathrm{H}+]=\begin{array}{l}
\frac{10^{-14}}{0.0677} \\
\text { OR pOH }=1.17
\end{array}
\end{aligned}
$$

$$
=1.477 \times 10^{-13}(\mathbf{1})
$$

$$
\therefore \mathrm{pH}=12.8 \underline{3} \text { (1) }
$$

If volume missed : max 4
If moles of acid wrong but method includes subtraction: max 5
If no subtraction : max 4

5. (a) $\left[\mathrm{H}^{+}\right]=\quad$ or $=1.74 \times 10{ }^{5} \times$

Allow ()

1
$\mathrm{pH}=4.51$
Can sfele M3 for correct pH conseq to their $[\mathrm{H}+]$, so pH $=5.01$ scores one
Muse be to 2 dp
M3
1
Alternative using_Henderson Hasselbach Equation

$$
\frac{0.186}{0.105}
$$

$\mathrm{pH}=\mathrm{pKa} \quad \log [\mathrm{HX}] / \mathrm{X}]=\log \left(1.74 \times 10{ }^{5}\right) \log (\quad)$ Allow ()

M1
$\mathrm{pKa}=4.76 \quad 0.248$
If [HX] / [X] or $\frac{0.186}{0.105}$ upside down, can only score 1

M2

$$
\begin{aligned}
& \mathrm{pH}==4.51 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { Must be to } 2 \mathrm{dp}
\end{aligned}
$$

M3
(b) $\quad \mathrm{mol} \mathrm{HX}$ after addition $(=0.251+0.015)=0.266$

For HX, if no addition or error in addition (other than AE) (or subsequent extra add or sub) MAX 3
mol X - after subtraction $(=0.140 \quad 0.015)=0.125$
For X if no subtraction or error in subtraction (other than AE) (or subsequent extra add or sub) MAX 3

1

$$
\frac{\mathrm{K}_{2} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\mathrm{CH}_{3} \mathrm{COO}^{-}} \quad \frac{1.74 \times 10^{-5} \times 0.266}{0.125}
$$

$\left[\mathrm{H}^{+}\right]=($
) $=$

If errors above in both addition AND subtraction can only score M3 for insertion of their numbers in rearranged expression. One-excéption, if addition and subtraction reversed then $\mathrm{pH}=$ 4.58 scores 2

Correct use of HX and X values from (d) gives $\mathrm{pH}=4.41$ and scores 4

If wrong method, e.g. or no use of rearranged K_{a} expression, may score M1\&M2 but no more.
Allow more but not fewer than 2 dp here.

Alternative using Henderson Hasselbach Equation
mol acid after addition $=0.251+0.015=0.266$
For HX, if no addition or error in addition (other than AE) (or subsequent extra add or sub) MAX 3
mol salt after addition $=0.140 \quad 0.015=0.125$
For X if no subtraction or error in subtraction (other than AE) (or subsequent extra add or sub) MAX 3
$\mathrm{pH}=(\mathrm{pKa} \log [\mathrm{HX}] /[\mathrm{X}])=\log \left(1.74 \times 10{ }^{5}\right) \quad \log (0.266 /$ 0.125)

If errors above in both addition AND subtraction can only score M3 for insertion of their numbers except if addition and subtraction reversed then $\mathrm{pH}=4.58$ scores 2
$\mathrm{pH}=4.76 \quad 0.328$
$\mathrm{pH}==4.43$
If [HX] / [X] upside down, lose M3 \& M4 (or next two marks) but can score M5 for correct pH conseq to their working, so if M1 \& M2 correct, pH = 5.09 scores 3.
Allow more but not fewer than 2 dp here.
6. (a) (i) G
(ii) F
(iii) H
(b) (i) cresol purple
(ii) yellow to red
both colours needed and must be in this order
1
(iii) yellow or pale yellow

Not allow any other colour with yellow

1
[6]

1
(b) Test indicator / conc HCl

Do not accept 'smell'.
Do not accept precipitatior reactions of aqueous ammonia.
e
1
Observation colour for an alkai// white fumes
If wrong test thelose second mark.
8. (Calibrate) meter with solution(s) of known $\mathrm{pH} / \mathrm{buffer}(\mathrm{s})$人10 not accept 'repeat reading'

Adjust meter/plot calibration curve
9. C
10. D
11. B
12. D
13. A

