Topic 12 Exercise 4 - Titrations and indicators

1. $20 \mathrm{~cm}^{3}$ of methanoic acid $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4} \mathrm{moldm}^{-3}\right)$ of concentration $0.10 \mathrm{moldm}^{-3}$ is titrated against sodium hydroxide of concentration 0.05 moldm $^{-3}$.
a) Calculate the pH of the solution:
i) initially
ii) after $10 \mathrm{~cm}^{3}$ of the alkali has been added
iii) after $20 \mathrm{~cm}^{3}$ of the alkali has been added
iv) after $30 \mathrm{~cm}^{3}$ of the alkali has been added
v) after $50 \mathrm{~cm}^{3}$ of the alkali has been added
b) Sketch a pH titration curve to show this reaction
c) Explain why the pH at the end-point is greater than 7 .
2. Calculate the pH after the following solutions are mixed together:
a) $15 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moldm}^{-3} \mathrm{HCl}$ and $10 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moldm}^{-3} \mathrm{NaOH}$
b) $10 \mathrm{~cm}^{3} 0.1 \mathrm{moldm}^{-3} \mathrm{HCl}$ and $15 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moldm}^{-3} \mathrm{NaOH}$
3. Sketch pH curves for the following titrations:
a) $20 \mathrm{~cm}^{3} 0.10$ moldm $^{-3} \mathrm{NH}_{3}$ against $0.1 \mathrm{moldm}^{-3} \mathrm{HCl}$
b) $20 \mathrm{~cm}^{3} 0.10 \mathrm{moldm}^{-3} \mathrm{NaOH}$ against $0.2 \mathrm{moldm}^{-3} \mathrm{~F} \mathrm{Cl}$
c) $20 \mathrm{~cm}^{3} 0.10$ moldm ${ }^{-3} \mathrm{CH}_{3} \mathrm{COOH}$ against 0.06 mg $1 \mathrm{dm}^{-3} \mathrm{NaOH}$
d) $20 \mathrm{~cm}^{3} 0.10 \mathrm{moldm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}$ against $0,15 \mathrm{moldm}^{-3} \mathrm{NH}_{3}$
4. Given the following $\mathrm{pK}_{\mathrm{In}}$ values:

State, with a reason, which of trie indicators would be suitable for each of the titrations in question 3.

