TOPIC 11 NW MS

1. (a) $\log (1 /$ time $)$ on the y-axis $+\log (\mathrm{vol})$ on x-axis If axes unlabelled use data to decide that \log (1 / time) is on the y-axis

Sensible scales
Lose this mark if the plotted points do not cover at least half of the paper
Lose this mark if the graph plot goes off the squared paper
Lose this mark if plots a non-linear / broken scale
Lose this mark if uses an ascending y-axis of negative numbers

Plots points correctly \pm one square

-

Line through the points is smooth
Lose this mark if the candidate's line is doubled

Line through the points is best fit \square ignores last point Must recognise troat point at $25 \mathrm{~cm}^{3}$ is an anomaly
If wrong graph, mark consequentially on anomaly if correctly plotted.
A kinked graph loses smooth and best fit marks
(b) Uses approniate x and y readings

Allow taken from table or taken or drawn on
graph

Must show triangle on graph or such as

$$
\frac{1.65-1.2}{1.4-0.9}
$$

Correctly calculates gradient 0.95 ± 0.02 Ignore positive or negative sign Correct answer only with no working scores this mark

Answer given to 2 decimal places
1
(c) First order or order is 1

Allow consequential answer from candidate's results
(d) Thermostat the mixture / constant temperature / use a water bath
or Colorimeter / uv-visible spectrometer / light sensor to monitor colour change

Reaction / rate affected by temperature change or Eliminates human error in timing / more accurate time of colour change
2.
(a) (i) (Experiment 1 2) [A] doubled, ([B] constant,)
rate doubled (1) stated or shown numerically
(ii) 2 (1)
or shown as ... $[B]^{2}$

$$
\frac{9.30 \times 10^{-5}}{(0.75)^{2} \times(1.50)}
$$

(b) (i) $\mathrm{k}=$
$=1.1(0) \times 10^{-4}$
(1)
units of k : $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~S}^{-1}(\mathbf{1})$
(ii) rate $=\left(1.10 \times 10^{-4}\right) \times(0.20)^{2} \times(0.10)$

$$
=4.4(1) \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)
$$

(1) for the answer

Ignore units Conseq on (i)
(1)

Upside down expression for k scores zero in (i) for 9073
but rate $=9073 \times(0.2)^{2} \times(0.1)=3 / 36(.3)$ conseq scores (1) in (ii)
3. (a) (i) Experiment 2: 0.4(0) $\times 10^{-3}(\hat{1})$

Experiment 3: 0.15 (1)
Experiment 4: 0.28 (1)

(ii) $\mathrm{k}=\quad=0.4(0) \mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~S}^{-1}$
(1)
(1)
(1)
(b) (change in) temperature (1)
4. (a) Power (or index or shown as x in [] x) of concentration term (in rate equation) (1)
(b) 2 (1)
(c) (i) Order with respect to $\mathbf{A}: 2$ (1) Order with respect to $\mathbf{B}: 0$ (1)
(ii) Rate equation: (rate $=)_{\mathrm{k}[\mathrm{A}]^{2}} \mathbf{(1)}$ Allow conseq on c(i)

Units for rate constant: $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}(\mathbf{1})$ conseq on rate equation
5. (a) order with respect to \mathbf{P} is 2
order with respect to \mathbf{Q} is 1
(b) (i) rate $=\mathrm{k}[\mathbf{R}][\mathbf{S}]$
(if wrong expression, no further marks)

$$
\text { rate }=\left(4.2 \times 10^{-4}\right) \times 0.16 \times 0.842
$$

$=4.7 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
ignore units even if wrong
$k=\frac{\text { rate }}{[R][S]^{2}}=\frac{8.1 \times 10^{-5}}{0.76 \times 0.98^{2}}$
(ii)
$=1.1 \times 10^{-4}$
(iii) T_{1}
*If calculated value ©r $k>4.2 \times 10^{-4}$, then answer to (iii) is T_{2}
6. (a) (i) 2
(ii)

(b) (i) rate/[$\left.\mathrm{NO}_{2}\right]\left[\left[\mathrm{O}_{2}\right]\right.$

13
$\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$
(ii) 1.9×10^{-3}
(iii) Step 2
7. (a) (i) $\left.\quad\left(\mathrm{K}_{\mathrm{p}}\right)=\left(\mathrm{p}_{2}\right)^{2 /} / \mathrm{p}_{\mathrm{x}}\right)\left(\mathrm{p}_{\mathrm{y}}\right)^{3}$
(penalise use of square brackets, allow ())
(ii) $\quad \mathbf{X}(22-6) / 4=4(\mathrm{MPa})$
(mark is for value 4 only, ignore units)
\mathbf{Y} obtained by multiplying value for \mathbf{X} by 3
(allow conseq on wrong value for \mathbf{X})
$\mathbf{Y} 4.0 \times 3=12(\mathrm{MPa})$
(mark is for value 12 only)
(iii) $\mathrm{K}_{\mathrm{p}}=6.0^{2} / 4.0 \times 12.0^{3}=5.21 \times 10^{-3}$
(allow conseq on wrong values for \mathbf{X} and Ye.g. $6^{2} / 3 \times 9^{3}=0.165$)
(if K_{p} wrong in (a)(i) CE)
MPa^{-2}
(allow any unit of P-2 provided ties to P used for K_{p} value)
(b) high pressure expensive (oup to energy or plant costs)
(Rate is) slow (at lower temperatures)
8. (a) $\mathrm{M} 1 \quad \mathrm{~K}_{\mathrm{p}}=\left({ }_{\mathrm{P}} \mathrm{Y}\right)^{3} \cdot(\mathrm{P} \mathrm{Z})^{2} /(\mathrm{pW})^{2} \cdot\left({ }_{\mathrm{P}} \mathrm{X}\right) \quad \mathrm{NB}$ [] wrong

M2 temperature

M3 increase

M4 particles have more energy or greater velocity/speed

M5 more collisions with $E>E_{a}$ or more successful collisions

M6 Reaction exothermic or converse

M7 Equilibrium moves in the left

Marks for other answers
Increase in pressure or concentration Addition of a catalyst;
Decrease in temperature;
Two or more changes made;
allow M1, M5, M6 allow M1, M5, M6 allow M1, M2, M6 allow M1, M6 x 3 Max 3 Max 3 Max 2
9. (a) $12(\mathrm{kPa})$
$p p=$ mole fraction \times total pressure or mole fraction $=12 / 104$
$=0.115$
(allow 0.12)
(b) $68(\mathrm{kPa})$
$\frac{\left(\mathrm{pSO}_{3}\right)^{2}}{\left(\mathrm{pSO}_{2}\right)^{2} \times\left(\mathrm{pO}_{2}\right)}$
(c) $\mathrm{K}_{\mathrm{p}}=$
(If K_{p} wrong, allow consequential units only) (penalise square brackets in expression but then mark on)

$$
=0.669
$$

(Allow 0.67)
(Allow full marks in calculation consequential on their values in (a) and (b))
kPa^{-1}
(d) T_{2}
(Must be correct to score any marks in this section)

(e) Increase

None
10. D
11. C
12. A
12.
13. D
14. B
15. B [1][1]
16. D [1]

