Topic 11 Exercise $4-\mathbf{K}_{p}$

1. For each of the following equilibria, write the expression for the equilibrium constant K_{p} and state its units:
i) $\quad 2 \mathrm{NO}_{2}(\mathrm{~g})==\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
ii) $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})==2 \mathrm{HI}(\mathrm{g})$
iii) $\quad 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})==2 \mathrm{SO}_{3}(\mathrm{~g})$
iv) $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})==2 \mathrm{NH}_{3}(\mathrm{~g})$
2. For the equilibrium $\mathrm{PCl}_{5}(\mathrm{~g})==\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
the equilibrium moles of $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$ and Cl_{2} are 1.0, 0.205 and 0.205 respectively at a constant pressure of 100 kPa . Calculate the value of K_{p}.
3. For the equilibrium $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})==2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

The equilibrium moles are $\mathrm{N}_{2} \mathrm{O}_{5}=1.0, \mathrm{~N}_{2} \mathrm{O}_{4}=0.11, \mathrm{O}_{2}=0.11$ at a constant pressure of 200 kPa
Calculate the value of K_{p}.
4. The reaction for the formation of hydrogen iodide does not go to completion but reaches an equilibrium: $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})==2 \mathrm{HI}(\mathrm{g})$
A mixture of $1.9 \mathrm{~mol}^{2} \mathrm{H}_{2}$ and 1.9 mol of I_{2} was prepared and allowed to reach equilibrium at 30 atm . The resulting equilibrium mixture was found to contain 3.0 mol of HI. Calculate the value of Kp.
5. Consider the equilibrium: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})==2 \mathrm{NO}_{2}(\mathrm{~g})$.

1 mol of dinitrogen tetroxide, $\mathrm{N}_{2} \mathrm{O}_{4}$, was introduced into a vessel. At equilibrium at a constant pressure of $100 \geqslant \mathrm{PQ}, 50 \%$ had dissociated. Calculate Kp for the reaction.
6. In an experiment, 9.6 moles of nitrogen and 27 moles of hydrogen were p and allowed to reach equilibrium at a constant pressure of 25 Mpa . It was found that two thirds of the nitrogen and hydrogen were converted into ammonia. Calculate Kp for the reaction.
$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})==2 \mathrm{NH}_{3}(\mathrm{~g})$
7. Hydrogen chloride can be oxidised to chlorine by the Deacon process:
$4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})==2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
0.800 mol of hydrogen chloride was mixed with 0.200 mol of oxygen at a constant pressure of 100 kPa . At equilibrium it was found that the mixture contained 0.200 mol of hydrogen chloride. Calculate Kp for the reaction.
8. A 0.04 sample of SO_{3} is allowed to reach equilibrium at a constant pressure of 200 kPa . The amount of SO_{3} present at equilibrium is found to be 0.0284 mole.
Calculate the value of K_{p} for the reaction $2 \mathrm{SO}_{3}(\mathrm{~g})==2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$.
9. The reaction between carbon monoxide and hydrogen proceeds according to the equilibrium $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})==\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ A vessel contains 0.1 mole of carbon monoxide. After 0.3 mole of hydrogen is added, 0.06 mol of methanol are formed. The pressure was kept constant at 300 kPa . Calculate the equilibrium constant K_{p}.
10. Hydrogen and iodine react together and the following equilibrium is established: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})==2 \mathrm{HI}(\mathrm{g})$
The value of K_{p} for this equilibrium is 64 . In an experiment, equal amounts of hydrogen and iodine were mixed together, and the equilibrium mixture of the three gases at a constant pressure of 100 kPa was found to contain 1.5 moles of iodine. Calculate the partial pressure of hydrogen iodide in the mixture at 723 K .

