Topic 11 Exercise 3 - Reaction Mechanisms and Rate Determining Steps

1. Explain what is meant by the term "rate-determining step"
2. Explain why the orders of reaction in a rate equation to not always correspond to the coefficients in a chemical equation.
3. Consider the reaction: $\mathrm{BrO}_{3}{ }^{-}+6 \mathrm{H}^{+}+6 \mathrm{Br}^{-} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

The rate equation for this reaction is: rate $=\mathrm{k}\left[\mathrm{BrO}_{3}{ }^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$
Give two reasons why you can tell that this reaction Byolves more than one step.
4. Consider the following reaction: $\mathrm{NO}_{-}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$

The rate equation for the reactionis: rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}$
Suggest a likely rate determising step for the reaction.
Hence suggest a two-step mechanism for this reaction.
5. The reaction $\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{W}$ proceeds according to the following mechanism:

Step 1: $2 \mathrm{X} \rightarrow \mathrm{Z}$ (slow)
Step 2: $\mathrm{Z}+\mathrm{Y} \rightarrow \mathrm{W}+\mathrm{X}$ (fast)

Show that these two steps are consistent with the overall equation and suggest a rate equation for this reaction.
6. The reaction $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ has the following rate equation: rate $=\mathrm{k}[\mathrm{NO}]^{2}$. Suggest a two-step mechanism for the reaction

