

Topic 11 Exercise 3 – Reaction Mechanisms and Rate Determining Steps

- 1. Explain what is meant by the term "rate-determining step"
- 2. Explain why the orders of reaction in a rate equation to not always correspond to the coefficients in a chemical equation.
- 3. Consider the reaction: $BrO_3^- + 6H^+ + 6Br^- \rightarrow 3Br_2 + 3H_2O$ The rate equation for this reaction is: rate = k[BrO_3^-][Br^-][H^+]^2

Give two reasons why you can tell that this reaction myolves more than one step.

4. Consider the following reaction: NO₂ \rightarrow CO \rightarrow NO + CO₂ The rate equation for the reaction is: rate = k[NO₂]²

Suggest a likely rate determining step for the reaction.

Hence suggest a two-step mechanism for this reaction.

5. The reaction X + Y → W proceeds according to the following mechanism: Step 1: 2X → Z (slow) Step 2: Z + Y → W + X (fast)

Show that these two steps are consistent with the overall equation and suggest a rate equation for this reaction.

6. The reaction $2NO + O_2 \rightarrow 2NO_2$ has the following rate equation: rate = k[NO]². Suggest a two-step mechanism for the reaction

www.youtube.com/megalecture

WWW.MEGALECTURE.COM

Page 1 of 1