

TEST TUBE REACTIONS FOR TOPIC 6

1) Halogen Displacement Reactions

	Chloride	Bromide	iodide
Chlorine		Yellow/Orange solution (orange in cyclohexane)	Yellow/Brown solution (purple in cyclohexane)
		$Cl_2 + 2Br^2 \rightarrow Br_2 + 2Cl^2$	$Cl_2 + 2l^2 \rightarrow l_2 + 2Cl^2$
Bromine	Yellow/Orange solution		Yellow/Brown solution
	(orange in cyclohexane)		(purple in cyclohexane)
	No reaction		$Br_2 + 2I^- \rightarrow I_2 + 2Br^-$
Iodine	Yellow/Brown solution	Yellow/Brown solution	
	(purple in cyclohexane)	(purple in cyclohexane)	
	No reaction	No reaction	

The more reactive halogen (ie the halogen with more oxidising power) is always reduced The more reactive halide (ie the halide with more reducing power) is always oxidised

2) Group 2 Precipitation Reactions

Solution	Observation on adding H ₂ SO ₄	conclusion	4 nic equation
MgCl ₂	No visible reaction	MgSO ₄ is soluble	
CaCl ₂	No visible reaction	CaSO₄ is soluble	
SrCl ₂	Faint white precipitate	SrSO₄ is only slightly soluble	$Sr^{2+}(aq) + SO_4^{2-}(aq) \rightarrow SrSO_4(s)$
BaCl ₂	Thick white precipitate	BaSO ₁ is insoluble	$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$

Conclusion: The solubility of Group 2 sulfates decreases down the group

•				
Solution	Observation on adding NaO분	conclusion	Ionic equation	
MgCl ₂	Thick white precipitate	Mg(OH) ₂ is insoluble	$Mg^{2+}(aq) + 2OH^{-}(aq) \rightarrow Mg(OH)_{2}(s)$	
CaCl ₂	Faint white precipitate	Ca(OH) ₂ is only slightly soluble	$Ca^{2+}(aq) + 2OH^{-}(aq) \rightarrow Ca(OH)_{2}(s)$	
SrCl ₂	No visible reaction	Sr(OH) ₂ is soluble		
BaCl ₂	No visible reaction	Ba(OH) ₂ is soluble		

WWW.MEGALECTURE.COM

www.youtube.com/megalecture

Conclusion: Solubility of Group 2 hydroxides increases down the group

Page 1 of 2

3) Group 7 Precipitation Reactions

Halide ion	Observation on adding AgNO ₃ (aq)	Observation on adding NH ₃
F ⁻	No precipitate	
Cl	White precipitate Ag ⁺ (aq) + Cl ⁻ (aq) \rightarrow AgCl(s)	Precipitate dissolves in dilute NH ₃
Br⁻	Cream precipitate Ag⁺(aq) + Br⁻(aq) → AgBr(s)	Precipitate dissolves in concentrated NH_3 but not dilute NH_3
ľ	Yellow Precipitate Ag ⁺ (aq) + I ⁻ (aq) \rightarrow AgI(s)	Precipitate insoluble in NH ₃

Page 2 of 2