Q1.

2 (a) provides energy; suitable examples; e.g. muscle contraction, protein synthesis, DNA replication, cell movement, active transport

3

(b) substrate level phosphorylation

cytoplasm (in glycolysis); matrix of mitochondria (in Krebs cycle); inner membrane of mitochondria/cristae;

oxidative phosphorylation

2 max

(c) oxidative phosphorylation more than substrate level phosphorylation; ref. to quantity, e.g. 32/34 vs. 4/6 per glucose;

2

requires proton gradient produced by ETC;
 with no oxygen ETC does not occur/no electron flow;
 NAD cannot be reformed/NADH cannot be oxidised;
 oxygen combines with electron/proton/oxygen final acceptor in ETC;

3 max

Total: 10

Q2.

Question 2

```
(a) (i) correctly indicated on inner membrane;
   (ii) correctly indicated in matrix;
                                                                             2
(b)
       folded inner membrane / cristae;
       increases surface area available;
       intermembrane space;
       allows accumulation of H+;
       impermeability of inner membrane to H+;
       maintains H* gradient / H* only go through channels;
       stalked particles / ATPase;
       channel for H+ / ATP synthesis;
       linear arrangement of ETC on inner membrane;
       greater efficiency;
                                                                             4 max
       (no) oxygen to combine with e / H / H / 2H / proton;
(c)
       at the end of the ETC;
       no H*gradient produced;
       no ATP synthesized / oxidative phosphorylation does not occur;
       no NAD regenerated / NADH not oxidized;
       stops Krebs cycle;
                                                                             3 max
                                                                          Total: 9
```

Q3.

Que	Question		Marks
1	(a)	a nucleotide ;	
		with three phosphate groups;	
		an organic / nitrogenous base / adenine;	
		a pentose sugar / ribose ;	
		ref. ester linkages / covalent bonds ;	3 max
	(b)	synthesized from ADP and P _i ;	
		soluble molecule;	
		diffuses rapidly / transported easily ;	
		on hydrolysis / removal of (third) phosphate;	
		energy released / 30.5 kJ (mol ⁻¹);	
		ref.(idea) intermediary (between energy yielding and energy requiring reactions);	3 max
	(c)	oxidative phosphorylation;	
		NADH ₂ to, cristae / inner membrane ;	
		oxidised to NAD;	
		ref. transfer of electrons to electron carriers / ETC;	
		H ⁺ pumped into intermembrane space ;	
		ref. to H* gradient;	
		H* (diffuses) through ATP synthase / stalked particle;	
		results in ADP and P _i to ATP ;	
		ref. chemiosmosis ;	
		ref. substrate level phosphorylation;	4 max

Q4.

Question	Expected Answers	Marks	
1 (a)	cytoplasm;		
(b)	hexose bisphosphate / phosphorylated 6C sugar / fructose bisphosphate ;	[1]	
(c)	hexose energy rich; does not react easily / AW; phosphorylation activates hexose; maintains concentration gradient of glucose inside and outside cell;	[2 max]	
(d)	does not enter Krebs cycle; decarboxylated / CO ₂ released; forms ethanal; reduced / ref: reduced NAD; to ethanol; reduced NAD does not enter ETC; ref: alcohol dehydrogenase;		
	irreversible;	[4 max]	
		[Total: 8]	

Q5.

2

process	major products
glycolysis	ATP ; pyruvate ; reduced NAD ;
Krebs cycle	ATP; reduced NAD / reduced FAD; CO ₂ ;
oxidative phosphorylation	ATP; water; NAD / FAD;

[8 max]

R NADP throughout

[Total: 8]

Q6.

1 (a) (i) 18; [1] (ii) 0.72; allow ecf from (i) [1] (b) 1 RQ value falls steeply, initially / 40-80 min; 2 then, very little change / AW; sugar / carbohydrate, metabolised at start; A named carbohydrate then fat metabolised; (due to) fasting / carbohydrate running out; [4 max] (c) 1 increase in rate of respiration; 2 kinetic energy increases / more enzyme-substrate complexes / enzyme activity increases ; effects of too high a rise in temperature; e.g. denaturation of enzymes 4 AVP; e.g. Q₁₀ = 2 [2 max] [Total: 8]

Q7.

7	(a)	(i)	gly	colysis;	[1]
		(ii)	cyto	oplasm/cytosol;	[1]
		(iii)	4;	$\mathbf{A} \underline{4} - 2 = 2$	[1]
	(b)	(i)	inne	er membrane/cristae/stalked particles;	[1]
		(ii)	1	reduced, NAD/FAD;	
			2	dehydrogenase enzymes;	
			3	release hydrogen; A H R H ₂ /H ⁺	
			4	hydrogen splits into proton and electron;	
			5	electrons flow down, ETC/AW;	
			6	energy released;	
			7	protons pumped (across inner membrane/from matrix);	
			8	into intermembrane space;	
			9	proton gradient;	
			10	protons pass through, ATP synthase/stalked particle;	
			11	oxygen final, hydrogen/proton, acceptor;	[5 max
(c)	(i)	nue		and ribosomes;	[1]
	(ii)	1	gly	colysis, does not occur in mitochondrion/only occurs in cytosol or cytopla	sm;
		2	ру	ruvate produced in glycolysis;	
		3	ру	ruvate can enter mitochondrion/glucose cannot enter mitochondrion;	
		4	ca	rbon dioxide produced/decarboxylation, in, Krebs/link reaction;	[3 max]
	(iii)	1	су	anide, inhibits cytochrome oxidase is a non-competitive inhibitor;	
		2	rec	duced NAD not oxidised/AW;	
		3	Kr	ebs cycle stops;	
		4	alt	ernative H acceptor needed/pyruvate is H acceptor/pyruvate is reduced;	R H ⁺
		5	lac	tate produced in cytoplasm;	
		6	by	anaerobic respiration;	[3 max]
				П	otal: 161

Q8.

7	(a)	(i)	removal of, carbon dioxide/carboxyl group; removal of hydrogen;		[2]	
		(ii)	P and Q;		[1]	
	(b)	(i)	3;		[1]	
		(ii)	1 inner mitochondrial membrane/cristae;			
			2 dehydrogenase enzymes;			
			3 release hydrogen;			
			4 hydrogen splits into protons and electrons;			
			5 <u>electrons</u> flow down, ETC/Electron Transfer Chain/AW;			
			6 energy released;			
			7 protons pumped across (inner membrane);			
			8 into intermembrane space;			
			9 proton gradient;			
			10 protons pass through, ATP synthase/stalked particles;			
			11 ATP formed; linked to 10			
			12 oxygen (final), hydrogen/proton and electron, acceptor;	max 4	[5 max]	
(c)	1	ру	ruvate converted to ethanal;			
	2	ett	nanal reduced;			
	3	by	reduced NAD;			
	4	NAD, oxidised/regenerated;				
	5					
	6		nanal dehydrogenase;			
			1 11 1			
	7		nanol formed;			
	8	pre	events H ⁺ from lowering pH;		[4 max]	

(d)	1	no, decarboxylation/carbon dioxide removed; A ora
	2	single step;
	3	lactate dehydrogenase;
	4	reversible; [3 max]
		[Total: 16]

Q9.

7 (a) active transport;

ribose; water;

hydrolysis; A dephosphorylation

heat;

[5]

(b) (i) (converted to) glycogen / lipid; (used in) glycolysis / respiration;

[1 max]

- (ii) anaerobic
 - 1. less ATP / only 2 ATP;
 - 2. per mol glucose;
 - lactate still contains energy / only glycolysis involved / stages other than glycolysis not involved;
 - 4. not sustainable / cannot go on indefinitely / AW;

[2 max]

(iii)

process	precise location
glycolysis	cytoplasm / cytosol;
link reaction	mitochondrial matrix;
Krebs cycle	mitochondrial matrix;
oxidative phosphorylation	inner mitochondrial membrane / cristae;

[4]

- (iv) 1. cannot pass through phospholipid bilayer;
 - 2. too big to fit through (glucose's) protein channel;
 - 3. no specific transport protein;
 - 4. AVP; e.g. used up as soon as it is made

[2 max]

(v) oxygen debt;

[1]

[Total:15]

Q10.

(a)	(i)	decarboxylation;	[1]
	(ii)	dehydrogenation / oxidation;	[1]
	(iii)	substrate level phosphorylation;	[1]
(b)		reduced NAD; A NADH etc. oxaloacetate;	[2]
(c)	1. 2. 3. 4. 5. 6. 7. 8. 9.	hydrogens split into protons and electrons; electrons pass along ETC; energy released used to pump protons; (from matrix) to intermembrane space; inner membrane impermeable to protons; proton gradient forms; protons move down gradient; through ATP, synthase / ATP synthetase; enzyme rotates; ATP produced;	R ATPase
			[Total: 10]

Q11.

- (i) 1. ATP is made, in the electron transport chain/by oxidative phosphorylation;
 - 2. oxygen is the final electron acceptor;
 - 3. in the, inner membrane of the mitochondrion/cristae;
 - transfer of electron (between electron carriers) provides energy;
 - 5. energy used to pump hydrogen ions (into intermembrane space);
 - 6. creates proton gradient;
 - diffusion of hydrogen ions down their electrochemical gradient causes ATP to be synthesised;
 - ref. chemiosmosis/ATP synthase/stalked particles;
 - idea that if less oxygen (consumed/available) then fewer electrons transferred along the chain;

[max 4]

- (ii) 1. at high temperatures, reactions/enzyme activity/metabolism, faster;
 - 2. because, molecules/enzymes/substrates, have more kinetic energy;
 - more frequent collisions;
 - therefore, respiration/Krebs cycle/electron transport chain/production of reduced NAD, take place at a faster rate;
 - 5. idea of increase in rate of anabolic reactions (requiring more ATP); [max 3]

- (b) (i) 1. oxygen consumed = oxygen inhaled oxygen exhaled;
 - 2. measure oxygen consumption at rest (x) and after exercise stops (y);
 - extra oxygen consumed/oxygen debt = y x;
 - 4. measure mass of lizard; [max 2]
 - (ii) 1. less (oxygen debt)(for Varanus); ora
 - 2. difference is greater at higher temperatures;
 - any two comparative figures at one temperature including units; [3]
 A 102.0 cm³ O₂ kg⁻¹ at 30°C and 40°C
- (iii) 1. Varanus uses, less anaerobic/more aerobic, respiration (when running);
 - more ATP produced per glucose molecule;
 - 3. able to run for long time;
 - 4. good chance of catching prey; [max 3]
- (iv) assume Varanus throughout
 - larger surface area, in lungs/for gas exchange;
 - more oxygen absorbed into blood (per unit time)/faster rate of gas exchange;
 - more oxygen supplied to muscles (so oxygen debt lower); [max 2]

[Total: 17]

Q12.

- 4 (a) (i) inner membrane / crista(e); [1]
 - (ii) 1. (electron comes from) hydrogen (atom); R H+/H2
 - (from) reduced NAD / reduced FAD;
 - 3. (from) dehydrogenation / oxidation, reactions;
 - (from substances in) Krebs cycle / link reaction / glycolysis;
 - in, matrix of mitochondrion / cytoplasm;

[max 3]

- (iii) 1. final electron acceptor / accepts electron from last carrier;
 - 2. so carrier can be reduced again;
 - so electrons can keep flowing (along ETC) / so ETC can continue to work;
 - (oxygen) combines with H⁺ to form water;

[2 max]

(b) (i) 1. (when pump stops working), resting potential not maintained

pump usually maintains the resting potential;

2. (during resting potential) membrane polarised

or

positive charge outside (neurone) / negative charge inside (neurone) / -70mV inside neurone relative to outside / potential difference across membrane;

- 3. (when pump stops working), ions (only) move by diffusion;
- 4. Nat into the neurone;
- outward diffusion of K⁺ is limited / K⁺ stay in neurone;
- 6. ref. non voltage-gated channels;
- (eventually) inside of the neurone, becomes less negative / contains (relatively) more positive ions

or

there is a reduced potential difference across the membrane;

[max 4]

- (ii) 1. voltage gated (calcium) channels open;
 - (calcium ions move in) by diffusion / move down their concentration gradient; [2]

- (c) (i) 1. Na+/K+, cannot move through membrane;
 - 2. so potential across membrane maintained even when pump stops / so membrane depolarisation does not happen;
 - 3. calcium ions cannot enter cell;
 - 4. so, (destructive) enzymes not activated;

[max 2]

- (ii) 1. gene (for protein channels), expressed less / switched off;
 - 2. transcription, reduced / stopped;
 - 3. AVP; e.g. reduced aerobic respiration / less ATP, for transcription

[max 2]

[Total: 16]

Q13.

Question 2 (a)

10000	name of structure	stage of respiration
Α	matrix	Krebs cycle ;
В	cristae / inner membrane A intermembrane space	oxidative phosphorylation/ETC; A build up of protons

Penalise once if rows A and B are correct but swapped If both structure names are correct (but stages incorrect) allow one mark

2

```
(b)
membranes separate from rest of cytoplasm;
allows different pH;
inner membrane attachment of stalked particles / ATPase;
allows linear / ordered arrangement of carriers/ETC/respiratory chain;
ref. to large internal surface area/AW;
                                                                                         3 max
matrix contains enzymes;
carries / transfers protons/hydrogen(atoms);
and electrons;
in/to ETC /FAD/respiratory chain;
ref. to dehydrogenation/oxidising;
energy used to form ATP;
ref. to coenzyme;
ref. alternative pathways (named);
(d)
light involved;
occurs in chloroplasts/chlorophyll;
on thylakoid membranes; ..
ref. to cyclic and non-cyclic;
photolysis of water/produces oxygen;
If oxidative phosphorylation stated
light not involved;
oxygen final hydrogen acceptor/oxygen not evolved;
                                                                                          3max
                                                                                         Total:11
```

Q14.

...... Question 2 cytoplasm; (a) 2 matrix in mitochondria; (b) coenzyme; carries electrons / protons / hydrogen ions / hydrogen / H / 2H / H*; R H₂ to electron transfer chain / AW; from glycolysis / link reaction / Krebs cycle; role of NAD in conversion / oxidation of triose phosphate to pyruvate in glycolysis; 3 max role of NAD in anaerobic respiration; (c) in absence of oxygen electron transfer chain does not work; oxygen final acceptor at end of electron transfer chain; reduced NAD cannot be oxidised; 3 (d) aerobic respiration produces more ATP / (ora); to produce the same amount of ATP more glucose broken down in glycolysis; glycolysis is the only part of respiration used / no ETC or oxidative phosphorylation; 2 max Total: 10 Q15. 3 (a) 1 no increase below 40 au; 2 (most) rapid production above 60 au; correct reference to Figs.; 2 max (b) 1 glucose to pyruvate/glycolysis; 2 pyruvate to lactate; reference lactate dehydrogenase; in absence/shortage of oxygen to muscles; pyruvate acts as a hydrogen acceptor; 6 reduced NAD to NAD/NAD regenerated; 3 max (c) 1 lactate must be oxidised; 2 extra oxygen required; 3 this is the oxygen debt; 3 linked to point 2 1 (d) more anaerobic respiration/insufficient oxygen supply;

Total 9

Q16.

Questi	ion 1			
(a)	matrix of mitocho	ondria ;	[1]	
(b)(i)	3 sites labeled ;;	deduct one mark for ea	ach additional or missing label	
(ii)	5 sites labeled ;;		[3 max]	
(c)	reduced NAD ; ref. to ETC ; oxidized / give up	hydrogen ;	[3]	
(d)	no proton gradient involved; no ATP synthase;			
	no ETC ;		[1 max]	
			Total [8]	
Q17.				
Ques	tion 3			
(a)	RQ = volum	ne of oxygen taken up	volume of carbon dioxide given off [1]	
(b)(i)	18 H ₂ O ; 18CO ₂ ;		[2]	

(iii) fatty acid A lipids / triglycerides / fat / oil;

(ii) 18/26; = 0.7;

less C-C bonds ;
less C-H bonds ;
more oxygen ; A O R O₂ [2 max]

2 marks for correct answer

Total [8]

[2]

[1]

Q18.

(c)

Question			Expected Answers		Marks	
1	(a)	1 2 3 4 5	(carbohydrates) less reduced / less hydrogen / less C-H bonds; for, aerobic respiration / ETC / NAD / ATP; less energy; per, unit mass / mole; accept figs for 3 and carbohydrate has lower energy density; accept to		3 max	
	(b)		carbohydrate = 1.0; lipid = 0.6 - 0.8;		2	
	(c)		RQ remains stable between 3°C and 10°C / AW; rise between 10°C and, 20°C / 25°C; 0.74 to, 0.76 / 0.8; sharp rise, between 25°C and 27°C / after 25°C; 0.8 to 0.91 / peaks at 0.91; at low temperatures hamster uses lipids; reason; e.g. more heat generated from lipid respir	accept difference for figs marks 3 max		
			at higher temperatures more carbohydrates are us		4 max	
	(d)		anaerobic respiration / conversion of carbohydrate	to fats as animal hibernates;	1	
				[Total: 10]		

Q19.

7 (a)

2 forms, reduced NAD / reduced FAD; A NAD / FAD, accepts H*
3 passed to ETC / cytochromes;
4 oxidative phosphorylation;
5 cytochrome oxidase;
6 forms water (with oxygen); [3 max]

(b) (i) (initial) steep rise up to 40 (μmol) Al;
2 paired figs;
ref. plateau above 40 (μmol) Al;
(ii) (initially) Al is, activator / cofactor / coenzyme;
detail of shape change of enzyme;

1 provides, H⁺ / protons / protons and electrons; A hydrogen R H₂ R produce H⁺

enzyme / substrate, limiting, after 40 (μmol) Al / high conc Al; **A** end product inhibition after 40 (μmol) Al [2 max]

[Total: 7]

Q20.

6	(a)	(i)	adenine;	
		(ii)	<u>ribose</u> ; R pentose	[2]
	(b)	1	energy is released when it is hydrolysed; A equation A joules for energy	
		2	easily hydrolysed;	
		3	(energy) used in, processes / reactions; A named process	
		4	rapid turnover;	
		5	links catabolic and anabolic reactions / AW;	
		6	found in, most cells / all organisms;	
		7	soluble so easily moved (within cell);	
		8	ATP produced from variety of reactions; ${\bf A}$ named reactions	[4 max]
(c)	1	E	TC / inner mitochondrial membrane / crista / stalked particles;	
	2	gr	ana / thylakoids / inner chloroplast membrane;	
	3	CV	rtoplasm / cytosol ;	
				ro
	4	m	itochondrial matrix;	[2 max]
				[Total: 8]

Q21.

6	(a)	(i)	phosphorylation;	[1]
		(ii)	<u>lysis</u> ;	[1]

© University of Cambridge International Examinations 2011

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL – October/November 2011	9700	41	
(iii)	dehydrogenation / oxidation; ignore reduction of NAD		[1]	

(b) provides activation energy / AW;for it to split / AW;[2]

- (c) 1. decarboxylated / carbon dioxide given off;
 - 2. ethanal produced;
 - 3. ethanal reduced;
 - 4. by reduced NAD;
 - to ethanol;
 - 6. dehydrogenase;

[4 max]

[Total: 9]

Q22.

6 (a) glucose > reduced NAD; NAD; 2H pyruvate > ethanal; > ethanol; CO2; [5] (b) in mammals lactate produced / no ethanol produced;
 no, decarboxylation / carbon dioxide released; 3. single step; 4. lactate dehydrogenase; 5. reversible; [3 max]

- (c) in anaerobic respiration
 - only glycolysis occurs / Krebs cycle stops / link reaction stops;
 - 2. glucose, not fully broken down / still contains energy;
 - 3. pyruvate does not enter mitochondrion;
 - (no oxygen) so no final electron acceptor (in ETC);
 - 5. ETC stops;
 - no oxidative phosphorylation;

[3 max]

[Total: 11]

Q23.

	<pre>C = crista(e) / inner membrane; f = matrix;</pre>				
(b) (i)	raise chemical PE of glucose / provide activation energy / AW ;	[1]			
(ii)	removes hydrogen / hydrogen carrier / coenzyme;	[1]			
(iii)	4; A net 2	[1]			
(iv)	dehydrogenation; A oxidation decarboxylation; accept 'oxidative decarboxylation' for two marks	[2]			
(v)	matrix;	[1]			
(vi)	 accepted by NAD; passed to ETC; for oxidative phosphorylation; ref. proton pump / chemiosmosis; 	[2 max]			
(c) 1. 2. 3. 4. 5. 6. 7. 8. 9.	found in all organisms; loss of phosphate / hydrolysis, leads to, energy release / release of 30.5 kJ (per mole); ADP + Pi ATP / reversible reaction; small packets of energy; small / water soluble, so can move around cell; (used by cells as) immediate energy donor; link between energy yielding and energy requiring reactions / AW; high turnover; example of use; e.g. active transport / muscle contraction / Calvin cycle / protein synthesis	[5 max]			
	,	[Total:15]			

Q24.

8

8	(a) (i)	cytoplasm / cytosol ;	[1]
		(ii)	NAD regenerated; so glycolysis can continue; to produce ATP;	[2 max]
		(iii)	lactate dehydrogenase;	[1]
		(iv)	reaction - condensation / polymerisation ; bond - glycosidic ;	[2]
	(b) in y	veast	
		1	decarboxylation / CO ₂ removed ;	
		2	ethanal (as intermediate step); ethanol produced;	
		4	two steps (from pyruvate);	
		5		
		6	not a reversible reaction / ethanol cannot be converted back to pyruvate;	
		7	idea of process less energy efficient;	£41
			allow ora for mp1, mp4, mp5, mp6 and mp7	[4 max]
	(0) (i)	carbon dioxide produced divided by oxygen consumed; volume / number of moles (of both gases);	[2]
		(ii)	carbohydrate = 1.0;	
			lipid = 0.7 ;	[2]
		(iii)	increase / go above one / infinity ;	[1]
				Fratal: 451
				[Total: 15]
Q25.				
3	(a)	aden	ine / nitrogen(ous) base / purine ; R adenosine	
		ribos	e / pentose ;	[2]
	(b)	1. (0	ell uses) ATP as source of energy;	
		2. AT	P broken down;	
		3. (so	o) cell must regenerate ATP;	
		4. fro	m ADP and Pi;	
		5. ref	f. ADP / AMP, must be synthesised in the cell;	[max 2]

- (c) (i) 1. palmitic acid has more, hydrogens / C-H bonds;
 - 2. per mole;
 - hydrogens needed for, ATP production / chemiosmosis / oxidative phosphorylation; [max 2]
 - (ii) alanine starvation / lack of fat or carbohydrate;

lactate – after anaerobic respiration; [2]

[Total: 8]

Q26.

- 3 (a) 1. oxidative phosphorylation;
 - 2. oxygen is final electron acceptor;
 - reduced to water / accepts hydrogen ion to form water; A equation
 - 4. so electron transport chain can continue; ora
 - 5. increases ATP production; ora
 - 6. in absence of oxygen only glycolysis continues; [max 3]

© Cambridge International Examinations 2013

Page 7	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2013	9700	43

- (b) (i) 1. lipid releases most energy;
 - 2. because it has more, hydrogens / C-H bonds;
 - 3. per unit mass;
 - hydrogens needed for, ATP production / chemiosmosis; [max 3]
 - (ii) many more hydrogens available to, reduce / convert, oxygen to water; [1]

[Total: 7]

Q27.

2 (a) (i) substrate level; protein synthesis / DNA replication / glycogenesis / polymerisation; active transport / movement of chromosomes / sliding filaments / movement of vesicles / AW;

(ii) water;

[1]

(iii) ATP, synthase / synthetase ; R ATPase [1]

Q28.

8 (a) (DNA for) transcription/codes for mRNA;

(ribosomes for) translation;

synthesis of, respiratory enzymes/named enzyme/inner membrane proteins; [max 3]

(b)

correct order	letter of stage
1	V
2	s
3	U
4	w
5	R
6	Q
7	X
8	т

S U W all above R; S U W in correct order;

QXT all below R;

QXT in correct order; [4]

(c)	hydrolysis/dephosphorylation/exoth	ermic/exergonic;	[1]			
(d)	anaerobic respiration;					
	substrate level phosphorylation (in g	lycolysis);				
	at triose phosphate ───── pyruvate step;					
	(net) gain of 2ATP (per glucose); A 2 used and 4 produced					
	pyruvate, reduced/gains hydrogens (from reduced NAD);					
	forming lactate;					
	NAD regenerated / NADH ₂ re-oxidised;					
	this allows glycolysis to continue;	I ethanol pathway	[max 5]			
			Total:131			

Q29.

8	(a) (i)	receptors/hypothalamus, detect change in blood temperature;	
		brain;	
		(receptor/brain) sends impulses to effector;	
		effector carries out response/example of response;	
		blood temperature returns to normal;	
		negative feedback;	[max 4]
	(ii)	larger SA: V ratio;	
		lose (relatively) more heat;	
		ref. more mitochondria to release heat energy;	
		cannot carry out behavioural actions to get warm;	
		infants cannot shiver;	[max 2]
	(b) (i)	A – ATP synthase/ATP synthetase/stalked particles; R ATPase	
	(D) (I)		(2)
		B – inner membrane/ crista; I phospholipid bilayer	[2]
	(ii)	arrow going down from intermembrane space to matrix;	[1]
	(iii)	1 and 3;	[1]
	(iv)	water;	[1]
	(v)	fatty acids; A lipid/fat/triglycerides	[1]
			[Total:12]
•			
0.			
5	(a) co	ontains ribose (not deoxyribose);	

Q30.

has three phosphate groups (not one);

[2]

- (b) (i) anaerobic accept ora for aerobic
 - 1 idea that glucose not completely, broken down/oxidised or only glycolysis occurs;
 - 2 pyruvate/lactate/ethanol, still contains energy;
 - 3 ETC stops;
 - 4 (because) no oxygen to act as (final) electron acceptor;
 - (so) no, Krebs cycle/link reaction/oxidative phosphorylation/ chemiosmosis;

[max 3]

- (ii) 1 lipid contains (relatively) more, hydrogen atoms/C-H;
 - 2 detail; e.g. molecular formula of glucose and a lipid given
 - 3 more reduced, NAD/FAD, produced;
 - 4 more electrons passed along ETC;
 - 5 more hydrogen ions pumped across inner mitochondrial membrane/ more hydrogen ions pumped into intermembrane space/steeper proton gradient;

[max 3]

[Total: 8]

Q31.

4 (a)	ignore ref. to energy currency		
		1	idea of synthesis of complex substances or synthesis of named large molecule/anabolic reactions;	
		2	transport of substances against concentration gradient/active transport;	
		3	movement qualified; e.g. muscle contraction/cilia movement/locomotion	
		4	AVP; e.g bioluminescence, electrical discharge, temperature regulation [magnetic endoctors of the content of th	ax 2]
(1	b)	(i)	both answers required for one mark	
			A adenine R adenosine	
			B ribose/pentose;	[1]
		(ii)	1 small;	
			2 water soluble;	
			3 easily transported around the <u>cell</u> ;	
			4 easily <u>hydrolysed</u> (to release energy);	
			5 (so) relatively large quantity of energy released / 30.5 kJ mol ⁻¹ ;	
			6 idea of, rapid turnover/small cellular ATP content is sufficient for cell's requirements; [m.	ax 3]
(c)	(i) 1	less/decreased (aerobic respiration);	
		2	oxygen, is the final electron acceptor/needed for ETC;	
		3	oxidative phosphorylation decreased/chemiosmosis decreased;	
		4	regeneration of NAD/Kreb's cycle/link reaction, decreased;	
		5	ATP synthesis decreases/ATP synthetase activity decreased; [ma	ax 2]
	(ii) n	ore ATP produced (for population growth);	[1]
(d)	(i) 1	HB8 always does better than mutant HB8;	
		2	HB8 and mutant HB8 both do better in aerobic than in anaerobic conditions;	
		3	data quote to support;	
		[9	r mp1 50×10^{6} per cm ³ v 900 \times 10 ⁶ per cm ³] and [490 \times 10 ⁶ per cm ³ v 410 \times 10 ⁶ er cm ³] or manipulated figures	
		[9	r mp2 50×10^6 per cm ³ v 490 × 10^6 per cm ³] and [900 × 10^6 per cm ³ v 410 × 10^6 er cm ³] or manipulated figures [ma	ax 2]

- (ii) 1 both grow better in aerobic compared to anaerobic;
 - 2 ref. to significant difference found in mutant HB8 (aerobic compared to anaerobic);
 - 3 data quote to support ;

for mp1 [880×10^6 per cm³ v 460×10^6 per cm³] and [840×10^6 per cm³ v 50×10^6 per cm³] or manipulated figures

for mp2

 $[840 \times 10^6 \text{ per cm}^3 \text{ v} 50 \times 10^6 \text{ per cm}^3]$ or $[460 \times 10^6 \text{ per cm}^3 \text{ v} 50 \times 10^6 \text{ per cm}^3]$ or manipulated figures

[max 2]

(iii) idea that HB8 is a better competitor than mutant HB8; ora

in mutant HB8 activity of, enzyme/nitrate reductase, is reduced;

[max 1]

[Total: 14]

Section B

1.

- 9 (a) 1 reduced, NAD / FAD;
 - 2 passed to ETC;
 - 3 inner membrane / cristae;
 - 4 hydrogen released (from reduced, NAD / FAD); RH2
 - 5 split into electrons and protons;
 - 6 protons in matrix;
 - 7 electrons pass along, carriers / cytochromes;
 - 8 ref. redox reactions;
 - 9 ref. energy gradient;
 - 10 energy released; R produced
 - 11 protons (pumped) into intermembrane space;
 - 12 proton gradient;
 - 13 protons pass through (protein) channels;
 - 14 ATP synthase / stalked particles;
 - 15 ATP produced;
 - 16 chemiosmosis;
 - 17 electron transferred to oxygen;
 - 18 addition of proton (to oxygen) to form water / (oxygen) reduced to water; [9 max]

if candidate mistakenly writes about photosynthesis only allow marking points 7, 8, 9, 10 and 15 to 5 max

```
(b) in cytoplasm
    19 NAD, becomes reduced / accepts H;
    20 during glycolysis;
    in plants
    21 pyruvate converted to ethanal;
    22 ethanal reduced;
    23 by reduced NAD;
    24 ethanol formed;
    in animals
    25 pyruvate converted to lactate;
    26 by reduced NAD;
    27 in, liver / muscles;
    28 allows glycolysis to continue;
                                                                                        [6 max]
    allow either 23 or 26
                                                                                     [Total: 15]
9 (a) 1. reduced, NAD/FAD;
        2. passed to ETC;
        3. inner membrane / cristae ;

 hydrogen released (from reduced, NAD / FAD); R H<sub>2</sub>

        5. split into electrons and protons;
        electrons pass along, carriers / cytochromes ;
        7. ref. energy gradient;
        8. energy released pumps protons into intermembrane space;
        proton gradient ;
        10. protons pass through (protein) channels;
        11. ATP synthase / stalked particles;
        12. (ATP produced from) ADP and inorganic phosphate;
        13. electron transferred to oxygen;
        14. addition of proton (to oxygen) to form water / (oxygen) reduced to water;
                                                                                       [8 max]
```

- (b) 15. organisms need energy, to stay alive / for metabolism / AW;
 - 16. ATP as, (universal) energy currency / described;
 - 17. light energy for photosynthesis; A light dependent stage
 - 18. light-dependent stage detail;
 - 19. light-independent stage detail;
 - 20. chemical energy;
 - 21. for anabolic reactions;
 - 22. named reaction; e.g. protein synthesis / starch formation
 - 23. activation of glucose in glycolysis / described ;
 - 24. active transport;
 - 25. detail; e.g. sodium potassium pump /movement against a concentration gradient
 - 26. mechanical energy / movement;
 - 27. detail; e.g. muscle contraction / spindle

© University of Cambridge International Examinations 2012

Page 14	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9700	41

- 28. temperature regulation;
- 29. AVP; e.g. bioluminescence / electrical discharge

[7 max]

[Total: 15]

- 9 (a) Active transport or anabolic reactions
 - 1. ATP provides energy (linked to either); ignore ref. to energy currency alone

active transport

- 2. movement against concentration gradient;
- 3. carrier / transport, protein (in membrane); ignore pump
- 4. binds to (specific) ion;
- 5. protein changes shape;

anabolic reactions

- 6. synthesis of complex substances from simpler ones;
- starch / cellulose / glycogen, from, monosaccharides / named monosaccharides / named sugar;
- 8. glycosidic bonds;
- 9. lipid / triglyceride, from fatty acids and glycerol;
- 10. ester bonds;
- 11. polypeptides / proteins, from amino acids;
- 12. peptide bonds;
- 13. other named polymer from suitable monomer;
- 14. appropriate named bond; 5 max

[7 max]

- (b) general
 - 15. reduced NAD produced in glycolysis; A glycolysis described
 - 16. small amount of ATP produced in glycolysis;

in yeast cells

- 17. pyruvate converted to ethanal;
- 18. carbon dioxide released / decarboxylation;
- 19. ethanal, reduced / accepts H;
- 20. by reduced NAD;
- 21. ethanol formed;

in mammalian cells

- 22. pyruvate converted to lactate;
- 23. by reduced NAD;

© University of Cambridge International Examinations 2012

Page 13	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2012	9700	42

- 24. in, liver / muscle, cells;
- 25. AVP ;;
- e.g. reversible in mammal / irreversible in yeast / single step in mammal / more than 1 in yeast / reoxidised NAD allows glycolysis to continue / named enzyme

only award either mp19 or mp23

[8 max]

[Total: 15]

6	(a)	De	scribe the main features of the	Krebs Cycle. [9]	
	(b)	Ex	plain the role of NAD in aerobic	respiration. [6]	
	(a)	1	matrix;		
		2	of mitochondrion;		
		3	acetyl CoA combines with oxa	loacetate;	
		4	to form citrate;		
		5	4C to 6C;		
		6	decarboxylation/produce CO ₂ ;		
		7	dehydrogenation/oxidation;		
		8	2CO ₂ released;		
		9	reduced NAD produced; acce	ept reduced coenzyme for one	mark - annotate 9/10
		10	reduced FAD produced;		
		11	ATP produced;		
		12	series of steps/intermediates;		
		13	enzyme catalysed reactions;		
		14	oxaloacetate regenerated;		
		15	AVP;		9 max
(b) 16	coen	zvm	e'		
			rogenase;		
	redu				
			electrons;		
			ons/H*/H/hydrogen;	R H ₂ /hydrogen molecules	
			bs cycle;	2 ,	
			n glycolysis;		
23	to cy	tocl	nromes/electron transfer chain	;	
24	reox	idis	ed/regenerated;		
25	ATP	pro	duced;		
26	3/2.5	5 (m	olecules of ATP) per reduced l	NAD;	6 max
					Total 15

5.

7	(a)		Describe the transfer of energy to ATP of	during photosynthesis.		[6]
	(b)		Describe the process of oxidative phosp	horylation.		[9]
					[Total: 15]	
	(a)	3 4 5 6 7 8 9	excitation of electrons / AW; ETC;	ı;	6 max	
	(b)					
	1.0		reduced NAD / FAD ;			
		12		DU		
		13	hydrogens removed ; split into H ⁺ and e ⁻ ;	R H ₂		
			e passed to carriers ;			
		16				
		17				
		18	joins with H+/ reduced;	R H ₂ / hydrogen		
			forms water;			
		20	0,			
		21				
		22			9 max [Total	: 15]

9	(a)	1	(glucose) phosphorylated by ATP;	
		2	raises energy level / overcomes activation energy;	
		3	hexose bisphosphate ;	
		4	lysis / splitting, of, glucose / hexose; R sugar splitting	
		5	breaks down to two TP; A GALP / GADP / G3P / PGAL	
		6	$6C \rightarrow 2 \times 3C$;	
		7	dehydrogenation / description ;	
		8	2 NAD reduced formed (from each TP to pyruvate formed);	
		9	4 ATP produced / net gain of 2 ATP ;	
		10	pyruvate produced;	
		11	reduced NAD \rightarrow oxidative phosphorylation / redox ; accept flow diagram	[7 max]
	(b)	12	nucleotide;	
		13	adenine + ribose / pentose + three phosphates ;	
		14	loss of phosphate leads to energy release / hydrolysis releases 30.5 kJ;	
		15	ADP + Pi ↔ ATP (reversible reaction);	
		16	synthesised during, glycolysis / Krebs cycle / substrate level phosphorylation;	
		17	synthesised, using electron carriers / oxidative phosphorylation / photophosphorylation;	
		18	in, mitochondria / chloroplasts ;	
		19	ATP synthase / ATP synthetase ;	
		20	chemiosmosis / description;	
		21	used by cells as <u>immediate</u> energy donor;	
		22	link between energy yielding and energy requiring reactions / AW;	
		23	active transport / muscle contraction / Calvin cycle / protein synthesis;	[8 max]
				[Total: 15]

9	(a)	1	acetyl CoA combines with oxaloacetate;	
		2	to form citrate ;	
		3	4C to 6C;	
		4	decarboxylation / CO ₂ released ;	
		5	dehydrogenation / oxidation / release of hydrogen ;	
		6	reduced NAD produced / NAD accepts hydrogen ;	
		7	reduced FAD produced / FAD accepts hydrogen ;	
		8	ATP produced;	
		9	substrate level phosphorylation ;	
		10	series of, steps / intermediates; A many named steps off a diagram	
		11	enzyme catalysed reactions;	
		12	oxaloa caetate regenerated;	
		13	occurs in mitochondrial matrix ;	[9 max]
			accept diagram	

		accept diagram	
(b)	14	coenzyme;	
	15	for dehydrogenase;	
	16	reduced;	
	17	carries, electrons and protons / hydrogen / NAD	
	18	from Krebs cycle ;	
	19	and glycolysis;	
	20	to ETC / electron carrier chain / oxidation ;	
	21	reoxidised / regenerated hydrogen removed;	
	22	ATP produced;	[6 max]
			[Total: 15]

10 (a) 1 ATP as universal energy currency; 2 light energy needed for photosynthesis; 3 ATP used conversion of GP to TP; ATP used to regenerate RuBP; 4 5 (energy needed for) anabolic reactions; 6 protein synthesis / starch formation / triglyceride formation; 7 activation energy; 8 (activate) glucose in glycolysis; 9 active transport; 10 example; e.g. sodium / potassium pump movement / locomotion; 11 example; e.g. muscle contraction / cilia beating 12 13 endocytosis / exocytosis / pinocytosis / bulk transport; [9 max] temperature regulation; 14 idea of lipid > protein > carbohydrate / AW; A lipid has more energy than (b) 15 either protein or carbohydrate comparative figures; e.g. 39.4, 17.0 and 15.8 accept any two kJ g1 / per unit mass; 17 18 more hydrogen atoms in molecule, more energy; lipid have more, hydrogen atoms / C-H bonds; 20 (most) energy comes from oxidation of hydrogen to water; 21 using reduced, NAD / FAD; 22 in ETC; 23 detail of ETC; 24 ATP production [6 max] [Total: 15]

10 (a) 1 nucleotide; 2 adenine + ribose / pentose + three phosphates; 3 loss of phosphate leads to energy release / hydrolysis releases 30.5 kJ; 4 ADP + Pi ← → ATP (reversible reaction); 5 small packets of energy; 6 small / water soluble, so can move around cell; 7 used by cells as immediate energy donor; 8 link between energy yielding and energy requiring reactions / AW; 9 high turnover; 10 two examples of use ; ; e.g. active transport / muscle contraction / Calvin cycle / 11 protein synthesis [8 max] (b) 12 Pyruvate, cannot enter mitochondrion / remains in the cytoplasm; 13 becomes, hydrogen acceptor / reduced; 14 by reduced NAD; 15 from glycolysis; 16 converted to lactate; 17 lactate dehydrogenase; allows glycolysis to continue; 18 no, decarboxylation / CO2 removed; 19 20 single step; 21 reversible reaction / converted back to pyruvate; 22 by oxidation; 23 ref. oxygen debt; 24 ethanol produced; accept ora for marking points 19-23 [7 max]

[Total: 15]

11 (a) 1. multicellular; 2. (cells are) differentiated into tissues; autotrophic / photosynthetic; eukaryotic (cells); 5. starch is storage compound; (some have) chloroplasts / chlorophyll; 7. cell wall; 8. made of cellulose; 9. plasmodesmata; 10. large (central) vacuole; [max 7] (b) 1. 0.5-1.0 μm, diameter / width; 2. double membrane; 3. inner membrane folded / cristae; hold, stalked particles / ATP synthase / ATP synthetase; 5. site of ETC; 6. ref. H⁺ and intermembrane space; 7. ATP production; 8. oxidative phosphorylation / chemiosmosis; 9. matrix is site of, link reaction / Krebs cycle; enzymes in matrix; 11. 70S ribosomes; 12. (mitochondrial) DNA; [max 8]

[Total: 15]