

Q1.

6

Strontium-90 decays with the emission of a β -particle to form Yttrium-90. The reaction is represented by the equation
$^{90}_{38}$ Sr $\rightarrow ^{90}_{39}$ Y + $^{0}_{-1}$ e + 0.55 MeV.
The decay constant is 0.025 year ⁻¹ .
(a) Suggest, with a reason, which nucleus, $^{90}_{38}\mathrm{Sr}$ or $^{90}_{39}\mathrm{Y}$, has the greater binding energy.
[2]
(b) Explain what is meant by the decay constant.
[2]
0,0
(A)

(c)	At t	the time of purchase of a Strontium-90 source, the activity is 3.7×10^6 Bq.	
	(i)	Calculate, for this sample of strontium,	
		1. the initial number of atoms,	
		number =[3]	
		2. the initial mass.	
		mass = kg [2]	
	_	LA	U
(ii)		etermine the activity A of the sample 5.0 years after purchase, expressing the	
	an	nswer as a fraction of the initial activity A_0 . That is, calculate the ratio $\frac{A}{A_0}$.	
		ratio =[2]	

Q2.

8 Fig. 8.1 shows the variation with nucleon number of the binding energy per nucleon of a nucleus.

Fig. 8.1

(a) On Fig. 8.1, mark with the letter S the position of the nucleus with the greatest stability.

(b) One possible fission reaction is

$$^{235}_{92}\text{U} \ + \ ^{1}_{0}\text{n} \ \rightarrow \ ^{144}_{56}\text{Ba} \ + \ ^{90}_{36}\text{Kr} \ + \ ^{21}_{0}$$

(i) On Fig. 8.1, mark possible positions for

1. the Uranium-235 (235 U) nucleus (label this position U),

2. the Krypton-90 (90 Kr) nucleus (label Mis position Kr). [1]

(ii) The binding energy per nucleon of each nucleus is as follows.

Use these data to calculate

	000	trese data to carculate	
	1.	the energy release in this fission reafigures),	action (give your answer to three significant
	2.	the mass equivalent of this energy.	energy = J [3]
			mass =kg [2]
(iii)	Suç	ggest why the neutrons were not incl	. 1 - 17 13 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
	11111		

Q3.

7 The isotope Manganese-56 decays and undergoes β-particle emission to form the stable isotope Iron-56. The half-life for this decay is 2.6 hours.
Initially, at time t = 0, a sample of Manganese-56 has a mass of 1.4 μg and there is no Iron-56.

Us

(a) Complete Fig. 7.1 to show the variation with time t of the mass of Iron-56 in the sample for time t = 0 to time t = 11 hours.

[2]

(b) For the sample of Manganese-56, determine

(i) the initial number of Mangapese-56 atoms in the sample,

NIN'S

number =[2]

(ii) the initial activity.

activity = Bq [3]

(C)	Det	termine the time at which the ratio	
		mass of Iron-56	
		mass of Manganese-56	
	ıs e	equal to 9.0.	
		time = hours [2]	
		A Design of the Section of the Secti	
		'	
Q4 .			
6	(a)	Define the <i>decay constant</i> of a radioactive isotope.	
	7 35		
		[2]	
	(h)	Strentium 00 is a radioactive jectore beging a half life of 20 0 years. Strentium 00 has a	
	(D)	Strontium-90 is a radioactive isotope having a half-life of 28.0 years. Strontium-90 has a density of 2.54 g cm ⁻³ .	
		A sample of Strontium-90 has an activity of 6.4×10^9 Bq. Calculate	
		(i) the decay constant λ , in s ⁻¹ , of Strontium-90,	
		$\lambda = \dots s^{-1}$ [2]	

(ii)	the ma	ss of Strontium-90	in the sample	,		1
				mass =		g [4]
	(iii) the	volume of the sam	ple.)
					•	
					Ye.	
				, ecx		
				X	,	
			.7	>		
			20)	volume =		cm ³ [1]
	D 6 .					
(c)	with Stro	ence to your answ ontium-90 presents	a serious hea	uggest why dust lth hazard.	that has been o	contaminated
		W.				
		10				

Q5.

8	A positron (,0e) is a particle that has the same mass as an electron and has a charge of	ı
	$+1.6 \times 10^{-19}$ C.	E
	A positron will interact with an electron to form two y-ray photons	ı

Exa

$$_{+1}^{0}e + _{-1}^{0}e \rightarrow 2\gamma$$

Assuming that the kinetic energy of the positron and the electron is negligible when they interact,

(a) suggest why the two photons will move off in opposite directions with equal energies,

	5
[3]	1

(b) calculate the energy, in MeV, of one of the $\gamma\text{-ray}$ photons.

energy = MeV [3]

Q6.

9	(a)		ample of a radioactive isotope contains N nuclei at time t . At time $(t + \Delta t)$, it contains $-\Delta N$) nuclei of the isotope.
		For	the period Δt , state, in terms of N , ΔN and Δt ,
		(i)	the mean activity of the sample,
			activity =[1]
		(ii)	the probability of decay of a nucleus.
			probability =[1]
	(b)	A c	obalt-60 source having a half-life of 5.27 years is calibrated and found to have an vity of 3.50×10^5 Bq. The uncertainty in the calibration is $\pm 2\%$.
		Cal	culate the length of time, in days, after the calibration has been made, for the stated vity of 3.50 × 10 ⁵ Bq to have a maximum possible error of 10%.
Q7.			time = days [4]

8	As	τ^0 meson is a sub-atomic particle. stationary π^0 meson, which has mass 2.4 × 10 ⁻²⁸ kg, decays to form two γ-ray photons. e nuclear equation for this decay is	Ex
		$\pi^0 \longrightarrow \gamma + \gamma$.	
	(a)	Explain why the two γ-ray photons have the same energy.	
		[2]	
	(b)	Determine, for each γ-ray photon,	
		(i) the energy, in joule,	
		energy = J [2]	
(ii)	the wavelength,	
		wavelength = m [2]	

/:::\	the memoratum	
(iii)	the momentum	

Q8.

8 Americium-241 is an artificially produced radioactive element that emits α -particles. A sample of americium-241 of mass 5.1 μ g is found to have an activity of 5.9 \times 10⁵ Bq.

For Examir.

- (a) Determine, for this sample of americium-241,
 - (i) the number of nuclei,

(ii) the decay constant,

(iii)	the	half-life,	in	years.
-------	-----	------------	----	--------

half-life = years [2]

(b) Another radioactive element has a half-life of approximately 4 hours. Suggest why measurement of the mass and activity of a sample of this element is not appropriate for the determination of its half-life.

[4]

Q9.

8 (a) The variation with nucleon number A of the binding energy per nucleon B_E of nuclei is shown in Fig. 8.1.

On Fig. 8.1, mark the approximate positions of

- (i) iron-56 (label this point Fe), [1]
- (ii) zirconium-97 (label this point Zr), [1]
- (iii) hydrogen-2 (label this point H). [1]

(b)	(1)	State what is meant by <i>nuclear fission</i> .	
		[2]	
	(ii)	By reference to Fig. 8.1, explain how fission is energetically possible.	
		[2]	
010			
Q10.			
8	(a)	State what is meant by the <i>binding energy</i> of a nucleus.	Exe
	(a)	Show that the energy equivalence of 1.00 is 930 MeV.	
		THE TIME	
		The state of the s	
			1

(c) Data for the masses of some particles and nuclei are given in Fig. 8.1.

	mass/u
proton	1.0073
neutron	1.0087
deuterium (2H)	2.0141
zirconium (⁹⁷ ₄₀ Zr)	97.0980

Fig. 8.1

Use data from Fig. 8.1 and information from (b) to determine, in MeV,

(i) the binding energy of deuterium,

binding energy = MeV [2]

(ii) the binding energy per nucleon of zirconium.

Exam Us

binding energy per nucleon = MeV [3]

Q11.

9	(a)	(i)	State what is meant by the <i>decay constant</i> of a radioactive isotope.	Exam
				Us
			[2]	
		(ii)	Show that the decay constant λ and the half-life t_{i} of an isotope are related by the	

 $\lambda t_{\frac{1}{2}} = 0.693.$

expression

(b) In order to determine the half-life of a sample of a radioactive isotope, a student measures the count rate near to the sample, as illustrated in Fig. 9.1.

Fig. 9.1

[3]

Initially, the measured count rate is 538 per minute. After a time of 8.0 hours, the measured count rate is 228 per minute.

	For
Ex	amin
	Use

Use these data to estimate the half-life of the isotope.

	half-life = hours [3]
c)	The accepted value of the half-life of the isotope in (b) is 5.8 hours. The difference between this value for the half-life and that calculated in (b) cannot be explained by reference to faulty equipment.
	Suggest two possible reasons for this difference.
	1
	2
	[2]

Q12.

	he element strontium has at least 16 iso otope has a half-life of 52 days.	topes. One of these isotopes is strontium-89. This
(a	State what is meant by isotopes.	
		[2]
(b	Calculate the probability per second or	of decay of a nucleus of strontium-89.
		Coill
		probability =s ⁻¹ [3]
c)	A laboratory prepares a strontium-89 s. The activity of this source is measure found to be 7.4×10^6 Bq.	d 21 days after preparation of the source and is
	Determine, for the strontium-89 source	at the time that it was prepared,
	(i) the activity,	
	· William	
		activity = Bq [2]
	(ii) the mass of strontium-89.	
		mass =g [2]

Q13.

8 (a)) State what is meant I	oy a nuclear fusion rea	ction.		Exi
					EX
	a-Edmira dimira dimi			<u> </u>	
	ALEJOHANNA ALIANIAN ALIANIAN			[2]	
(b) One nuclear reaction equation	n that takes place in t	the core of t	he Sun is represented by the	
		$^{2}_{1}H + ^{1}_{1}H \rightarrow ^{3}_{2}$	He + energ	y.	
	Data for the nuclei ar	e given in Fig. 8.1.			
			mass/u		
		proton ¹ H	1.00728		
		deuterium ² H	2.01410		
		helium ³ ₂ He	3.01605		
		Fig. 8.1		-	

(i) Calculate the energy, in joules, released in this reaction.

energy = J [3]

(ii) The temperature in the core of the Sun is approximately 1.6 × 10⁷ K. Suggest why such a high temperature is necessary for this reaction to take place.

Q14.

8	(a)	Explain why the mass of an α -particle is less than the total mass of two individual protons and two individual neutrons.	Exa
		rol	

(b) An equation for one possible nuclear reaction is

$${}_{2}^{4}\text{He} + {}_{7}^{14}\text{N} \rightarrow {}_{8}^{17}\text{O} + {}_{1}^{1}\text{p}.$$

Data for the masses of the nuclei are given in Fig. 8.1.

		mass/u
proton	{p	1.00728
helium-4	4He	4.00260
nitrogen-14	14N	14.00307
oxygen-17	17 ₈ O	16.99913

Fig. 8.1

(i) Calculate the mass change, in u, associated with this reaction.

(ii) Calculate the energy, in J, associated with the mass change in (i).

(111)		a minimum speed.	Exar L
		[2]	
Q15.			
8	(a)	Define the term radioactive decay constant.	Use
	(b)	State the relation between the activity A of a sample of a radioactive isotope containing N atoms and the decay constant λ of the isotope.	
	(c)	Radon is a radioactive gas with half-life 56 s. For health reasons, the maximum permissible level of radon in air in a building is set at 1 radon atom for every 1.5×10 ²¹ molecules of air. 1 mol of air in the building is contained in 0.024 m ³ . Calculate, for this building, (i) the number of molecules of air in 1.0 m ³ ,	
		number =	

(ii)	the maximum	permissible	number	of radon	atoms	in 1.0 m ³	of air,
------	-------------	-------------	--------	----------	-------	-----------------------	---------

number =

/:::\	tha	mavimum	permissible	a ativity	of radan	nor aubia	matra	of air
(IIII)	uie i	Haxiimulli	permissible	activity	or radon	per cubic	mene	Ji ali

activity = B

Q16.

6 The isotopes Radium-224 ($^{224}_{88}$ Ra) and Radium-226 ($^{226}_{88}$ Ra) both undergo spontaneous α-particle decay. The energy of the α-particles emitted from Radium-224 is 5.68 MeV and from Radium-226, 4.75 MeV.

(a)	(1)	State what is meant by the decay constant of a radioactive nucleus.

(ii) Suggest, with a reason, which of the two isotopes has the larger decay constant.

.....[

(b) Radium-224 has a half-life of 3.6 days.	
(i) Calculate the decay constant of Radium-224, stating the unit in which it is measured.	
decay constant =[2]	
(ii) Determine the activity of a sample of Radium-224 of mass 2.24 mg .	
activity = Bq [4]	
	Us
(c) Calculate the number of half-lives that must elapse before the activity of a sample of a radioactive isotope is reduced to one tenth of its initial value.	
number of half-lives =[2]	
Tiuribei oi riaii-lives –[2]	

Q17.

7 Fig. 7.1 illustrates the variation with nucleon number A of the binding energy per nucleon E of nuclei.

use

Fig. 7.1

(a) (i) Explain what is meant by the binding energy of a nucleus.

(ii) On Fig. 7.1, mark with the letter S the region of the graph representing nuclei having the greatest stability. [1]

(b) Uranium-235 may undergo is sion when bombarded by a neutron to produce Xenon-142 and Strontium-90 as shown below.

$$^{235}_{92}$$
 1 $^{1}_{0}$ n \rightarrow $^{142}_{54}$ Xe + $^{90}_{38}$ Sr + neutrons

(i) Determine the number of neutrons produced in this fission reaction.

number =[1]

(ii) Data for binding energies per nucleon are given in Fig. 7.2.

isotope	binding energy per nucleon / MeV
Uranium-235	7.59
Xenon-142	8.37
Strontium-90	8.72

Fig. 7.2

Calculate

1. the energy, in MeV, released in this fission reaction,

the mass equivalent of this energy.

Q18.

	MEGA LECTURE	
8	Uranium-234 is radioactive and emits α-particles at what appears to be a constant rate.	
	A sample of Uranium-234 of mass 2.65 μg is found to have an activity of 604 Bq.	
	(a) Calculate, for this sample of Uranium-234,	
	(i) the number of nuclei,	
	number =[2]	
	(ii) the decay constant,	

(b)	Suggest why the activity of the Uranium-234 appears to be constant.	0,
	[1]	
(c)	Suggest why a measurement of the mass and the activity of a radioactive isotope is not an accurate means of determining its half-life if the half-life is approximately one hour.	
	[1]	

Q19.

7 (a) Explain what is meant by the binding energy of a nucleus.

[1]

(b) Fig. 7.1 shows the variation with nucleon number (mass number) A of the binding energy per nucleon E_{B} of nuclei.

Fig. 7.1

One particular fission reaction may be represented by the nuclear equation

$$^{235}_{92}$$
U + $^{1}_{0}$ n \rightarrow $^{141}_{56}$ Ba + $^{92}_{36}$ Kr + 3^{1}_{0} n.

- (i) On Fig. 7.1, label the approximate positions of
 - 1. the uranium $\binom{235}{92}$ U) nucleus with the symbol U,
 - 2. the barium $\binom{141}{56}$ Ba) nucleus with the symbol Ba
 - 3. the krypton $\binom{92}{36}$ Kr) nucleus with the symbol Kr.

[2]

The neutron that is absorbed by the uranium nucleus has very little kinetic energy. Explain why this fission reaction is energetically possible.

0. 8. 0400 8. 0400 8. 0400 8. 040 11000 9. 11000 9. 11000 9.	
	[2]

(c) Barium-141 has a half-life of 18 minutes. The half-life of Krypton 92 is 3.0 s. In the fission reaction of a mass of Uranium-235, equal numbers of barium and krypton nuclei are produced. Estimate the time taken after the fission of the sample of uranium for the ratio

> number of Barium-141 kuclei number of Krypton-92 nuclei

to be approximately equal to 8.

ptol Inlevia

Q20.

8	The controlled reaction between deuterium (2H) and tritium (3H) has involved ongoing	
	research for many years. The reaction may be summarised as	

Foi Examii Usi

$$^{2}_{1}H + ^{3}_{1}H \rightarrow ^{4}_{2}He + ^{1}_{0}n + Q$$

where $Q = 17.7 \,\text{MeV}$.

Binding energies per nucleon are shown in Fig. 8.1.

	binding energy per nucleon /MeV
2 _H	1.12
¹ ₀n	-
⁴ 2He	7.07

Fig. 8.1

(a)	Suggest why binding energy per nucleon for the neutron is not quoted.						
	[1]						

(b) Calculate the mass defect, in kg, of a helium ⁴₂He nucleus.

(c) (i) State the name of the type of reaction illustrated by this nuclear equation.

.....[1]

(ii) Determine the binding energy per nucleon, in MeV, of tritium (³₁H).

binding energy per nucleon = MeV [3]

Q21.

8 (a	State what is meant by the decay constant of a radioactive isotope.	F. Exam
		[2]
(b	Show that the decay constant λ is related to the half-life $t_{\frac{1}{2}}$ by the expression	
	$\lambda t_{\frac{1}{2}} = 0.693.$	
		[3]
(c)	Cobalt-60 is a radioactive isotope with a half-life of 5.26 years (1.66 × 10 ⁸ s).	
	A cobalt-60 source for use in a school laboratory has an activity of $1.8 \times 10^5 \mathrm{Bq}$.	
	Calculate the mass of cobalt-60 in the cource.	
	Willy Wille	

Q22.

8	In s	ome	power stations, nuclear fission is used as a source of energy.	For Examiner's
	(a)	State	e what is meant by <i>nuclear fission.</i>	Use
			[2]	
	(b)	be a Com	nuclear fission reaction produces neutrons. In the power station, the neutrons may absorbed by rods made of boron-10. In the nuclear equation for the absorption of a single neutron by a boron-10 eus with the emission of an α -particle.	
			$^{10}_{5}B + \dots \rightarrow ^{10}_{3}Li + \dots$ [3]	
	(c)		gest why, when neutrons are absorbed in the boron rods, the rods become hot as a alt of this nuclear reaction.	
		*******	[3]	
Q23.				
8	sta	ble.	tope phosphorus-33 ($^{33}_{15}$ P) undergoes β -decay to form sulfur-33 ($^{33}_{16}$ S), which f-life of phosphorus-33 is 24.8 days.	İS F Exan
	(a)	(i)	Define radioactive half-life.	
				[2]
		(ii)	Show that the decay constant of phosphorus-33 is $3.23 \times 10^{-7} \text{s}^{-1}$.	
			[[1]

(b)	A p	oure sample of phosphorus-33 has an initial activity of 3.7 × 10 ⁶ Bq.	
	Cal	Iculate	
	(i)	the initial number of phosphorus-33 nuclei in the sample,	
		number =[2]	
	(ii)	the number of phosphorus-33 nuclei remaining in the sample after 30 days.	
		number =[2]	
(c)		er 30 days, the sample in (b) will contain phosphorus-33 and sulfur-33 nuclei. e your answers in (b) to calculate the patio	For aminer:
		number of phosphorus-33 nuclei after 30 days	Use
		number of sulfur-33 nuclei after 30 days	
		W.	
		ratio =[2]	
24.	,		

Q2

8	Rac	don-2	22 is a radioactive element having a half-life of 3.82 days.
			22, when found in atmospheric air, can present a health hazard. Safety measures e taken when the activity of radon-222 exceeds 200 Bq per cubic metre of air.
	(a)	(i)	Define radioactive decay constant.
			[2]
		(ii)	Show that the decay constant of radon-222 is $2.1 \times 10^{-6} \text{s}^{-1}$.
			[1]
(b)	Α	volun	ne of 1.0 m ³ of atmospheric air contains 2.5 × 10 ²⁵ molecules.
	Ca	alcula	ate the ratio
			number of air molecules in 1.0 m ³ of atmospheric air number of radon-222 atoms in 1.0 m ³ of atmospheric air
	foi	r the	minimum activity of radon-222 at which safety measures should be taken.
			ratio =[3]
			18110 =[3]

Q25.

8	When a neutron is captured by a uranium-235 nucleus, the outcome may be represented by
	the nuclear equation shown below

For Examiner: Use

$$^{235}_{92}\text{U} \, + \, ^{1}_{0}\text{n} \, \longrightarrow \, ^{95}_{42}\text{Mo} \, + \, ^{139}_{57}\text{La} \, + \, x^{1}_{0}\text{n} \, + \, 7^{\; 0}_{-1}\,\text{e}$$

(a) (i) Use the equation to determine the value of x.

x =[1]

(ii) State the name of the particle represented by the symbol $\substack{0\\-1}$ e.

.....[1]

(b) Some data for the nuclei in the reaction are given in Fig. 8.1.

		mass/u	binding energy per nucleon /MeV
uranium-235	(²³⁵ ₉₂ U)	235.123	
molybdenum-95	(⁹⁵ ₄₂ Mo)	94.945	8.09
lanthanum-139	(¹³⁹ ₅₇ La)	138.955	7.92
proton	(¹ ₁ p)	1.007	^
neutron	$\binom{1}{0}$ n)	1.009	×~
			A V

Fig. 8.

Use data from Fig. 8.1 to

(i) determine the binding energy, in a nucleus of uranium-235,

oinding energy = u [3]

	(ii)	show that the binding energy per nucleon of a nucleus of uranium-235 is 7.	.18 Me	V. F. Exam U
(c)		kinetic energy of the neutron before the reaction is negligible. data from (b) to calculate the total energy, in MeV, released in this reaction		3]
		energy =	MeV (21

Q26.

8 (a) State what is meant by nuclear bind	ding energy.
---	--------------

(b) The variation with nucleon number A of the binding energy per nucleon $B_{\rm F}$ is shown in Fig. 8.1.

Fig. 8.1

When uranium-235 ($^{235}_{92}$ U) absorbs a slow-moving neutron, one possible nuclear reaction is

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{95}_{42}$ Mo + $^{139}_{57}$ La + $^{21}_{1}$ N + $^{0}_{-1}$ 0 6 + energy

(i) State the name of this type of nuclear reaction.

- (ii) On Fig. 8.1, mark the position of
 - the uranium-235 nucleus (label this position U), [1]
 - the molyspenum-95 (95Mo) nucleus (label this position Mo), [1]
 - the lanthanum-139 (139/La) nucleus (label this position La). [1]

Examiner's Use

(iii) The masses of some particles and nuclei are given in Fig. 8.2.

	mass/u
β-particle	5.5 × 10 ⁻⁴
neutron	1.009
proton	1.007
uranium-235	235.123
molybdenum-95	94.945
lanthanum-139	138.955

Fig. 8.2

Calculate, for this reaction,

1. the change, in u, of the rest mass,

change in mass = u [2]

2. the energy released, in MeV, to three significant figures.

energy = MeV [3]

Q27.

8	One	possible	nuclear	fission	reaction	is
---	-----	----------	---------	---------	----------	----

²³⁵ ₉₂ U +	$\frac{1}{0}$ n \rightarrow	¹⁴¹ ₅₆ Ba	+	92 36 Kr	+	$3_0^1 n$	+	energy.
----------------------------------	-------------------------------	---------------------------------	---	-------------	---	-----------	---	---------

For Examiner's Use

Barium-141 ($^{141}_{56}$ Ba) and krypton-92 ($^{92}_{36}$ Kr) are both β -emitters. Barium-141 has a half-life of 18 minutes and a decay constant of $6.4 \times 10^{-4}\,\text{s}^{-1}$. The half-life of krypton-92 is 3.0 seconds.

- (a) State what is meant by decay constant.
- (b) A mass of 1.2g of uranium-235 undergoes this nuclear reaction in a very short time (a few nanoseconds).
 - (i) Calculate the number of barium-141 nuclei that are present immediately after the reaction has been completed.

number =[2

(ii) Using your answer in (b)(i) calculate the total activity of the barium-141 and the krypton-92 a time of 1.0 hours after the fission reaction has taken place.

activity = Bq [4]

Q28.

10	(a)	Explain what is r	meant by the binding energy of a	nucleus.	
					[2
	(b)	Data for the mas	ses of some particles are given		[E
				mass/u	
			proton neutron tritium (³ ₁ H) nucleus polonium (²¹⁰ ₈₄ Po) nucleus	1.00728 1.00867 3.01551 209.93722	
			Fig. 10.1		•
		The energy equi	valent of 1.0 u is 930 MeV.		
(i) (Calculate the bind	ding energy, in MeV, of a tritium	(³ H) nucleus.	
			binding energy =		MeV [3]
(ii)]	The total mass of 211.70394 u.	the separate nucleons that ma	ke up a polonium	-210 (²¹⁰ Po) nucleus is
	(Calculate the bind	ding energy per nucleon of polo	nium-210.	
			binding energy per nucleon =		MeV [3]

(c) One possible fission reaction is

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n$$
.

By reference to binding energy, explain, without any calculation, why this fission reaction is energetically possible.

Q29.

9 Some water becomes contaminated with radioactive iodine-131 (¹³¹₅₃I). The activity of the iodine-131 in 1.0 kg of this water is 460 Bq. The half-life of iodine-131 is 8.1 days.

(b) (i) Calculate the number of iodine-131 atoms in 1,0 kg of this water.

number =[3]

(ii)	An amount of	1.0 mol	of	water	has	a	mass	of	18g	
------	--------------	---------	----	-------	-----	---	------	----	-----	--

Calculate the ratio

number of molecules of water in 1.0 kg of water number of atoms of iodine-131 in 1.0 kg of contaminated water

ratio =	 [2
ratio -	 L-

(c) An acceptable limit for the activity of iodine-131 in water has been set as 170 Bqkg⁻¹.

Calculate the time, in days, for the activity of the contaminated water to be reduced to this acceptable level.

time = days [3]

Q30.

9	One likely means b	w which nuclear fusion may	be achieved on a	practical scale is the D-T reaction.
---	--------------------	----------------------------	------------------	--------------------------------------

(a) State what is meant by nuclear fusion.

[1]

(b) In the D-T reaction, a deuterium (²₁H) nucleus fuses with a tritium (³₁H) nucleus to form a helium-4 (⁴₂He) nucleus. The nuclear equation for the reaction is

$$^{2}_{1}H + ^{3}_{1}H \rightarrow ^{4}_{2}He + ^{1}_{0}n + energy$$

Some data for this reaction are given in Fig. 9.1.

	mass/u
deuterium (² H)	2.01356
tritium (³ H)	3.01551
helium-4 (4He)	4.00151
neutron (1n)	1.00867

Fig. 9.1

(i) Calculate the energy, in MeV, equivalent to 1.00 u. Explain your working.

(ii) Use data from 19.9.1 and your answer in (i) to determine the energy released in this D-T reaction.

energy =MeV [2]

(11	')	the tritium must be high.	
		[2]	
Q31			
9	During the de-commissioning of a nuclear reactor, a mass of 2.5×10^6 kg of steel is found to be contaminated with radioactive nickel-63 ($^{63}_{28}$ Ni). The total activity of the steel due to the nickel-63 contamination is 1.7×10^{14} Bq.		
	(a)	Calculate the activity per unit mass of the steel.	
		activity per unit mass = Roko ⁻¹ [1]	

(b)	Special storage precautions need to be taken when the activity per unit mass due t	0
	contamination exceeds 400 Bq kg ⁻¹ .	
	Nickel-63 is a β-emitter with a half-life of 92 years.	

The maximum energy of an emitted β-particle is 0.067 MeV.

(i) Use your answer in (a) to calculate the energy, in J, released per second in a mass of 1.0 kg of steel due to the radioactive decay of the nickel.

		energy =
	(ii)	Use your answer in (i) to suggest, with a reason, whether the steel will be at a high temperature.
		<i>Q</i> , •
		X.) [1]
(iii)		e your answer in (a) to determine the time interval before special storage precautions the steel are not required.
		· Killing

wind the sale explication of the sale of t

winth the sale extratte.