

Q1.

|    | 6   | (a)   | (i)                  | curve is not smooth, fluctuations, etc                              | i1          |       |
|----|-----|-------|----------------------|---------------------------------------------------------------------|-------------|-------|
|    | 100 |       | (ii)                 | curve is same shape or same half-life, not affected by temperature  |             |       |
|    |     |       | (11)                 | etc                                                                 | 9790        | [2]   |
|    |     | (b)   | (i)                  | 134 E                                                               | 1           | [1]   |
|    |     |       | (ii)                 | $\alpha$ -particle shown as ${}^4_2$ He or as ${}^4_2\alpha$        | :1          |       |
|    |     |       |                      | nucleon number of Po shown as 216                                   | 11          |       |
|    |     |       |                      | proton number of Po shown as 84                                     | 1           | [3]   |
|    |     |       |                      |                                                                     |             | 101   |
| Q2 |     |       |                      |                                                                     |             |       |
|    |     |       |                      |                                                                     | <b>&gt;</b> |       |
| 8  |     | (a)   | ) po                 | osition shown as <i>A</i> = 227, <i>Z</i> = 91                      | В1          | [1]   |
|    |     | (b)   | T 27                 | u shown as A = 243, Z = 94                                          | В1          |       |
|    |     |       | D                    | shown with $A = A_{Pu}$ and with $Z = (Z_{Pu} + 1)$                 | B1          | [2]   |
| Q3 |     |       |                      |                                                                     |             |       |
|    |     |       | 55.50                |                                                                     |             | 10200 |
|    | 8   | (a)   | nucleus              | emits N A Particles and/or γ-rays                                   |             | [2]   |
|    |     | (b)   |                      | unaffected by environmental changes N                               | 20011.0     | 0850  |
|    |     | (0)   |                      | temperature, pressure etc. (one e.g. is sufficient)                 |             | [2]   |
|    |     | (c)   |                      | nt probability of decay (per unit time) of a nucleus                | 85          | F03   |
|    |     |       | cannot               | predict which particular sucleus will decay next B                  |             | [2]   |
| Q4 |     |       |                      |                                                                     |             |       |
| Q4 | •   |       |                      | · A ·                                                               |             |       |
| 7  | 1   | (a) β | (-decay              |                                                                     | B1          | [1]   |
|    |     |       |                      |                                                                     | -           |       |
|    |     | е     |                      | ny two of Z, N and A do not change                                  | B1          |       |
|    |     | 0     |                      | is loss of energy only<br>is an electromagnetic wave                | В1          | [2]   |
|    |     |       | llow 'α(·<br>iagram' | -decay) as change of 4 in the nucleon number cannot be shown on the | e<br>(B2)   |       |
|    |     |       |                      | ve credit for a 'bald' α(-decay)                                    | (02)        |       |

Q5.



| 7 | (a) | α-particle: either helium nucleus or contains 2 protons +                                                             | 2 neutrons |           |     |
|---|-----|-----------------------------------------------------------------------------------------------------------------------|------------|-----------|-----|
|   |     | or <sup>4</sup> <sub>2</sub> He                                                                                       |            | B1        |     |
|   |     | β-particle: either electron or -e                                                                                     |            | B1        |     |
|   |     | $\alpha$ speed < $\beta$ speed                                                                                        | (1)        |           |     |
|   |     | α discrete values of speed/energy, β continuous spectrum either α ionising power >> β ionising power                  | (1)        |           |     |
|   |     | or $\alpha$ range << $\beta$ range                                                                                    | (1)        |           |     |
|   |     | α positive, β negative (only if first two B marks not scored)                                                         | (1)        |           |     |
|   |     | α mass > β mass (only if first two B marks not scored) (any two sensible pairs of statements relevant to differences, | (1)        |           |     |
|   |     | – do not allow statements relevant to only $\alpha$ or $\beta$ , 1 each, ma                                           | x 2)       | B2        | [4] |
|   | (b) | (i) $^{236}_{92}U \rightarrow ^{232}_{90}Th$                                                                          |            | M1        |     |
|   |     | + 4He                                                                                                                 |            | A1        | [2] |
|   |     | (ii) 1. correct position for U at $Z = 92$ , $N = 145$                                                                |            | B1        |     |
|   |     | 2 correct position for No relative to LLie 7 + 1 and N                                                                | _ 1        | <b>P1</b> | [2] |

Q6.

| 8 | (a) | sur<br>(If s | rate of decay / activity / decay (of nucleus) is not affected by external factors / environment / surroundings |    |     |  |  |  |  |
|---|-----|--------------|----------------------------------------------------------------------------------------------------------------|----|-----|--|--|--|--|
|   | (b) | (i)          | gamma / γ                                                                                                      | B1 | [1] |  |  |  |  |
|   |     | (ii)         | alpha / α                                                                                                      | B1 | [1] |  |  |  |  |
|   | Î   | (iii)        | gamma / y                                                                                                      | B1 | [1] |  |  |  |  |
|   |     |              |                                                                                                                |    |     |  |  |  |  |

Q7.

[1]



| 7   | (a  |     |              |                | ns with same proton number/atomic number ns contain different numbers of neutrons/different atomic mass                               | B1<br>B1 | [2  |
|-----|-----|-----|--------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
|     | (b  | ) ( | i) (         | 92             |                                                                                                                                       | A1       | [1  |
|     |     | (i  | i) '         | 146            |                                                                                                                                       | A1       | [1  |
|     | (c  | ) ( | i) r         | mass :         | = 238 × 1.66 × 10 <sup>-27</sup><br>= 3.95 × 10 <sup>-25</sup> kg                                                                     | C1<br>A1 | [2  |
|     |     | (i  | i) \         | volume         | $e = \frac{4}{3}\pi \times (8.9 \times 10^{-15})^3$ (= 2.95 × 10 <sup>-42</sup> )                                                     | C1       |     |
|     |     |     | (            | densit         | y = (3.95 × 10 <sup>-25</sup> )/(2.95 × 10 <sup>-42</sup> )<br>= 1.3 × 10 <sup>17</sup> kg m <sup>-3</sup>                            |          |     |
|     |     |     |              |                | = 1.3 × 10" kg m "                                                                                                                    | A1       | [2  |
|     | (d  | ) n | ucle<br>ithe | eus co         | ntains most of mass of atom ear diameter/volume very much less than that of atom                                                      | В1       |     |
|     |     | 0   | r            | atom i         | s mostly (empty) space                                                                                                                | В1       | [2  |
|     |     |     |              |                |                                                                                                                                       |          |     |
| Q8. |     |     |              |                |                                                                                                                                       |          |     |
| 7   | ' ( | a)  | (i)          | eithe<br>or    | r helium <u>nucleus</u><br>contains 2 protons and 2 neutrons                                                                          |          | [1] |
|     |     |     | (ii)         | spee           | range is a few cm in air/sheet of thin paper<br>d up to 0.1 c<br>es dense ionisation in air                                           |          |     |
|     |     |     |              |                | ively charged or deflected in magnetic or electric fields two, 1 each to max 2)                                                       |          | [2] |
|     |     |     |              | (arry          | (WO, 1 each to max 2)                                                                                                                 |          | 141 |
|     | (   | b)  | (i)          | $^4_2\alpha$ . | B1                                                                                                                                    |          |     |
|     |     |     |              | eithe          | r ip or iH B1                                                                                                                         |          | [2] |
|     |     |     | (ii)         |                | nitially, α-particle must have some kinetic energy B1                                                                                 |          | [1] |
|     |     |     | (ii)         |                | I.1 MeV = 1.1 × 1.6 × 10 <sup>-13</sup> = 1.76 × 10 <sup>-13</sup> J                                                                  |          |     |
|     |     |     |              | E              | $\frac{1}{10} \times 10^{-13} = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$ C1                                       |          |     |
|     |     |     |              | × 5            | $70 \times 10^{-13} = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$ C1<br>= 7.3 × 10 <sup>6</sup> m s <sup>-1</sup> A1 |          | [4] |
|     |     |     |              |                | use of 1.67 × 10 <sup>-27</sup> kg for mass is a maximum of 3/4                                                                       |          | 141 |

Q9.



| 7   | (a)          | (i)   | either helium nucleus or particle containing two protons and two neutrons                                                                                                                                                | B1             | [1]               |
|-----|--------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|
|     |              | (ii)  | allow any value between 1 cm and 10 cm                                                                                                                                                                                   | B1             | [1]               |
|     | (b)          | (i)   | energy = $(8.5 \times 10^{-13})/(1.6 \times 10^{-13})$<br>= $5.3 \text{ MeV}$                                                                                                                                            | M1<br>A0       | [1]               |
|     |              | (ii)  | number = $(5.3 \times 10^6)/31$<br>= $1.7 \times 10^5$ (allow 2 s.f. only)                                                                                                                                               | C1<br>A1       | [2]               |
|     |              | (iii) | number per unit length = $(1.7 \times 10^5)$ /(a)(ii) correct numerical value correct unit                                                                                                                               | A1<br>B1       | [2]               |
| Q10 |              |       |                                                                                                                                                                                                                          |                |                   |
| 7   | (a           | ) (i) | 2 protons and 2 neutrons                                                                                                                                                                                                 | В1             | [1]               |
|     |              | (iii) | e.g. positively charged 2e mass 4u constant energy absorbed by thin paper or few cm of air (3 cm → 8 cm) (not low penetration) highly ionizing deflected in electric/magnetic fields (One mark for each property, max 2) | B2             | [2]               |
|     | (b           |       | ass-energy is conserved fference in mass 'changed' into a form of energy                                                                                                                                                 | B1<br>B1       |                   |
|     |              | er    | nergy in the form of kinetic energy of the products / γ-radiation notons / e.m. radiation                                                                                                                                | В1             | [3]               |
| Q11 |              |       |                                                                                                                                                                                                                          |                |                   |
| 7   | ' ( <b>a</b> | Y     | / = 1 and X = 0<br>= 2<br>= 55                                                                                                                                                                                           | A1<br>A1<br>A1 | [1]<br>[1]<br>[1] |
|     | (t           | e     | xplanation in terms of mass – energy conservation<br>nergy released as gamma or photons or kinetic energy of products or<br>m radiation                                                                                  | B1<br>B1       | [2]               |

Q12.



|     | 7 | (a  | ac   | in paper reduces count rate hence $\alpha$ ddition of 1cm of aluminium causes little more count rate reduction hence only her radiation is $\gamma$                                                           | B1<br>B1       | [2]   |
|-----|---|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|
|     |   | (b  | lo   | agnetic field perpendicular to direction of radiation ok for a count rate in expected direction / area if there were negatively harged radiation present. If no count rate recorded then $\beta$ not present. | B1<br>B1       | [2]   |
| Q13 |   |     |      |                                                                                                                                                                                                               |                |       |
| 7   | ( |     |      | majority/most went straight through<br>ere deviated by small angles                                                                                                                                           | 31             |       |
|     |   |     |      |                                                                                                                                                                                                               | 31<br>31       | [3]   |
|     | ı |     | mas  | s and charge concentrated in (very small) nucleus                                                                                                                                                             | 31<br>31<br>31 | [3]   |
| Q14 |   |     |      |                                                                                                                                                                                                               |                |       |
| 7   |   | (a) | (i)  | W = 206 and X = 82<br>Y = 4 and Z = 2                                                                                                                                                                         | A <sup>2</sup> |       |
|     |   |     | (ii) | mass-energy is conserved mass on rhs is less because energy is released                                                                                                                                       | B <sup>*</sup> |       |
|     |   | (b) |      | affected by external conditions/factors/environment<br>two examples temperature and pressure                                                                                                                  | В              | 1 [1] |
| Q15 | • |     |      |                                                                                                                                                                                                               |                |       |



| 7   | (a) (i) nucleus contains 92 protons nucleus contains 143 neutrons (missing 'nucleus' 1/2) outside / around nucleus 92 electrons most of atom is empty space / mass concentrated in nucleus total charge is zero diameter of atom ~ 10 <sup>-10</sup> m or size of nucleus ~ 10 <sup>-15</sup> m any two of (B1) marks |                       | B1<br>B1<br>(B1)<br>(B1)<br>(B1)<br>(B1)                                                         |          |     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------|----------|-----|
|     |                                                                                                                                                                                                                                                                                                                       | any two of (B1) marks |                                                                                                  |          | [4] |
|     |                                                                                                                                                                                                                                                                                                                       | (ii)                  | nucleus has same number / 92 protons<br>nuclei have 143 and 146 neutrons (missing 'nucleus' 1/2) | B1<br>B1 | [2] |
|     | (b)                                                                                                                                                                                                                                                                                                                   | (i)                   | Y = 35<br>Z = 85                                                                                 | A1<br>A1 | [2] |
|     |                                                                                                                                                                                                                                                                                                                       | (ii)                  | mass-energy is conserved in the reaction                                                         | B1       |     |
|     |                                                                                                                                                                                                                                                                                                                       |                       | mass on rhs of reaction is less so energy is released explained in terms of $E = mc^2$           | В1       | [2] |
| Q16 |                                                                                                                                                                                                                                                                                                                       |                       |                                                                                                  |          |     |
| 8   | (a)                                                                                                                                                                                                                                                                                                                   |                       | shows nucleon number as 220 shows proton number as 87                                            |          | [2] |
|     | (b)                                                                                                                                                                                                                                                                                                                   |                       | shows products as ${}^4_2$ He OR ${}^4_2\alpha$ and ${}^{216}_{85}$ At(allow e.c.f. from (a))    |          | [2] |
| Q17 |                                                                                                                                                                                                                                                                                                                       |                       |                                                                                                  |          |     |
| 6   | (a)                                                                                                                                                                                                                                                                                                                   | (i)                   | 26 protons                                                                                       |          |     |
|     |                                                                                                                                                                                                                                                                                                                       | (iii)                 | 30 neutrons                                                                                      | [2]      |     |
|     | (b)                                                                                                                                                                                                                                                                                                                   | (i)                   | mass = 56 x 1.66 x 10 <sup>-27</sup>                                                             |          |     |
|     |                                                                                                                                                                                                                                                                                                                       |                       | (allow x 1.67 x 10 <sup>-27</sup> but 0/2 for use of 26 or 30)<br>= 9.3 x 10 <sup>-26</sup> kg   |          |     |
|     |                                                                                                                                                                                                                                                                                                                       | (ii)                  | density = mass/volume where volume = $4/3 \times \pi \times r^3$                                 | [4]      |     |
|     | (c)                                                                                                                                                                                                                                                                                                                   |                       | nucleus occupies only very small fraction of volume of atom or 'lot of empty space inside atom'  |          |     |
|     |                                                                                                                                                                                                                                                                                                                       |                       | any further good physics e.g. nuclear material is very dense B1                                  | [2]      |     |

Q18.



| 7    | (a) ( | (i)   | nucleus is small                                  | j.                                                              | <b>VI</b> 1    |     |      |
|------|-------|-------|---------------------------------------------------|-----------------------------------------------------------------|----------------|-----|------|
|      |       |       | in comparison to                                  | size of atom                                                    | <b>A</b> 1     | [2] |      |
|      |       | (ii)  | nucleus is massi                                  | ve/heavy/dense                                                  | В1             |     |      |
|      |       |       | and charged                                       | (allow to be scored in (i) or (ii))                             | B1             | [2] |      |
|      | (b) ( | (i)   | symmetrical path                                  | and deviation correct w.r.t. position of nucleus                | В1             |     |      |
|      |       |       | deviation less tha                                | an in path AB                                                   | В1             |     |      |
|      | ì     | (ii)  | deviation > 90° a                                 | nd in correct direction                                         | B1             | [3] |      |
|      | ·     |       |                                                   |                                                                 |                | BOB |      |
| Q19. |       |       |                                                   |                                                                 |                |     |      |
|      | 12.12 |       |                                                   |                                                                 | ٧              |     |      |
| 7    | (a)   |       | ost α-particles de<br>accept 'undeviated          | eviated through small angles                                    |                | В1  |      |
|      |       |       |                                                   | riated through angles greater than 90°                          |                | В1  | [2]  |
|      |       |       |                                                   |                                                                 |                |     |      |
|      | (b)   | ) (i  | ) allow 10 <sup>-9</sup> m –                      | → 10 <sup>-11</sup> m                                           |                | В1  | [1]  |
|      |       | (ii   | ) allow 10 <sup>-13</sup> m -                     | → 10 <sup>-15</sup> m                                           |                | В1  | [1]  |
|      |       | 10.00 | (if (i) and (ii) o                                | ut of range but (ii) = 10 <sup>-4</sup> (i), then allow 1 mark) |                |     | 1.51 |
|      |       |       | (if no units or v                                 | wrong units but (ii) = 10 <sup>-4</sup> (i), then allow 1 mark) |                |     |      |
|      |       |       |                                                   | C                                                               |                |     |      |
|      |       |       |                                                   |                                                                 |                |     |      |
| Q20. |       |       |                                                   |                                                                 |                |     |      |
| _    |       |       | 2 B F                                             |                                                                 |                |     |      |
| 8    | (a)   |       | <u>ucleus</u> has consta<br>er unit time / in a g | nt probability of decay                                         | M1<br>A1       | 4   | [2]  |
|      |       |       |                                                   | annot predict which <u>nucleus</u> will decay next')            |                | 4   | 141  |
|      |       |       |                                                   |                                                                 |                |     |      |
|      | (b)   | ) (i  | count rate / act                                  | ivity decreases                                                 | В1             | ı   | [1]  |
|      |       | G     | ) count rate float                                | uates / is not smooth                                           | В1             | ī   | [1]  |
|      |       |       |                                                   |                                                                 | 2. <del></del> | 31  |      |
|      |       |       | 14.                                               |                                                                 |                |     |      |

Q21.

(c) either the (decay) curves are similar / same or curves indicate same half-life

**B1** 

[1]



| 7    | (a)                                                    | deviation shown correctly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1             | [1]           |  |  |  |
|------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|--|--|--|
|      | (b)                                                    | smaller deviation (not zero deviation)acceptable path wrt position of N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | [2]           |  |  |  |
|      | (c)                                                    | the nucleus is (very) small in comparison to the atom (special case: 'atom is mostly empty space' scores 1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | [2]           |  |  |  |
|      | (d)                                                    | deviation depends on charge on the nucleus / N / electrostatic repulsionsame charge so no change in deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | [2]           |  |  |  |
|      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Tota          | al: 7]        |  |  |  |
| Q22. |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |  |  |  |
| 7    | (a)                                                    | either forms of same element or atoms / nuclei with same number of protons atoms / nuclei contain different numbers of neutrons (use of 'element' rather than atoms / nuclei scores max 1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | [2]           |  |  |  |
|      | (b) (i) decay is not affected by environmental factors |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |  |  |  |
|      |                                                        | (ii) either time of decay (of a nucleus) cannot be predicted or nucleus has constant probability in a given time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .B1            | [1]           |  |  |  |
|      | (c)                                                    | <sup>185</sup> Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В1             |               |  |  |  |
|      |                                                        | either <sup>0</sup> <sub>-1</sub> e or <sup>0</sup> <sub>-1</sub> β                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1             | [2]           |  |  |  |
|      |                                                        | ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total          | l: <b>6</b> ] |  |  |  |
| Q23. |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |  |  |  |
| 7    | (a)                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1<br>A1       | [2]           |  |  |  |
|      | (b)                                                    | nucleon number conserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1<br>B1<br>B1 | [3]           |  |  |  |
|      |                                                        | FOR 1970 P. 19 | A1<br>A1       | [1]<br>[1]    |  |  |  |

Q24.



| 7   | (a) | (i)   | most α-particles were deviated through small angles (allow 1 mark for 'straight through' / undeviated)                                                          | B2                 | [2] |
|-----|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|
|     |     | (ii)  | small fraction of $\alpha$ -particles deviated through large angles greater than 90° (allow rebound back)                                                       | M1<br>A1           | [2] |
|     | (b) | 500   | β-particles have a range of energies β-particles deviated by (orbital) electrons β-particle has (very) small mass (any two sensible suggestions, 1 each, max 2) | B2                 | [2] |
|     |     | DO    | not allow β-particles have negative charge or β-particles have high speed                                                                                       |                    |     |
| Q25 | 5.  |       |                                                                                                                                                                 |                    |     |
| 9   | (a  |       | icleus emits α-particles or β-particles and/or γ-radiation form a different / more stable nucleus                                                               | B1<br>B1           | [2] |
|     | (t  | ) (i) | fluctuations in count rate (not 'count rate is not constant')                                                                                                   | B1                 | [1] |
|     |     | (ii)  | no effect                                                                                                                                                       | В1                 | [1] |
|     |     | (iii) | if the source is an α-emitter                                                                                                                                   | В1                 |     |
|     |     |       | either $\alpha$ -particles stopped within source (and gain electrons) or $\alpha$ -particles are helium <u>nuclei</u>                                           | В1                 | [2] |
|     |     |       | allow 1/2 for 'parent nucleus gives off recliation to form daughter nucleus'                                                                                    |                    |     |
| Q26 | Ď.  |       |                                                                                                                                                                 |                    |     |
|     | 7   |       | nuclei with the same number of protons<br>and a different number of neutrons                                                                                    | B1<br>B1           | [2] |
|     |     | (b)   | (i) (mass + energy) (taken together) is conserved momentum is conserved one count required max. 1                                                               | (B1)<br>(B1)<br>B1 | [1] |
|     |     | (     | (ii) $a = 1$ and $b = 0$<br>x = 56<br>y = 92                                                                                                                    | B1<br>B1<br>B1     | [3] |
|     |     |       | proton number = 90<br>nucleon number = 235                                                                                                                      | B1<br>B1           | [2] |

Q27.



- 7 (a) (i) the half life / count rate / rate of decay / activity is the same no matter what external factors / environmental factors or two named factors such as temperature and pressure changes are applied
- B1 [1]
- (ii) the observations of the count rate / count rate / rate of decay / activity / radioactivity during decay shows variations / fluctuations
- B1 [1]

(b)

| property | α-particle    | β-particle                  | γ-radiation |
|----------|---------------|-----------------------------|-------------|
| charge   | (+)2e         | -е                          | 0           |
| mass     | 4u            | 9.11 × 10 <sup>-31</sup> kg | 0           |
| speed    | 0.01 to 0.1 c | up to 0.99 c                | c           |

one mark for each correct line B3 [3]

(c) collision with molecules
causes ionisation (of the molecule) / electron is removed

B1
[2]

## Q28.

| 6 | (a) (i) | greater     | deflection                                                                                                                                                             | M0   |     |
|---|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
|   |         | greater     | electric field / force on $\alpha$ -particle                                                                                                                           | A1   | [1] |
|   | (ii)    | greater     | deflection                                                                                                                                                             | MO   |     |
|   |         | greater     | electric field / force on $\alpha$ -particle                                                                                                                           | A1   | [1] |
|   | (b) (i) | either      | deflections in opposite directions                                                                                                                                     | M1   |     |
|   |         |             | because oppositely charged                                                                                                                                             | A1   |     |
|   |         | or          | β less deflection                                                                                                                                                      | (M1) |     |
|   |         |             | β has smaller charge                                                                                                                                                   | (A1) | [2] |
|   | (ii)    |             | er deflection                                                                                                                                                          | M1   |     |
|   |         | becaus      | e larger mass                                                                                                                                                          | A1   | [2] |
|   | (iii)   | β less o    | deflection because higher speed                                                                                                                                        | B1   | [1] |
|   |         |             | ma and $F = Eq$ or $a = Eq / m$<br>er $(2 \times 1.6 \times 10^{-19}) \times (9.11 \times 10^{-31})$<br>$(1.6 \times 10^{-19}) \times 4 \times (1.67 \times 10^{-27})$ | C1   |     |
|   |         | or          | [2e × 1 / 2000 u] / [e × 4u]                                                                                                                                           | C1   |     |
|   | ra      | tio = 1 /40 | 00 or 2.5 × 10 <sup>-4</sup> or 2.7 × 10 <sup>-4</sup>                                                                                                                 | A1   | [3] |

Q29.



B1

**B1** 

**B1** 

C1

A1

[1]

[1]

[2]

6 (a) 92 protons in the nucleus and 92 electrons around nucleus

|      |     | 143 neutrons (in the nucleus)                                                                                                                                                                | B1             | [2] |
|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
|      | (b) | (i) α-particle travels short distance in air                                                                                                                                                 | В1             | [1] |
|      |     | (ii) very small proportion in backwards direction / large angles majority pass through with no /small deflections either most of mass is in very small volume (nucleus) and is charged or mo | B1<br>B1       |     |
|      |     | entrier most of mass is in very small volume (nucleus) and is charged of mo                                                                                                                  | B1             | [3] |
|      | (c) | I = Q/t<br>$n/t = (1.5 \times 10^{-12})/(2 \times 1.6 \times 10^{-19})$<br>$n/t = 4.7 \times 10^{6} \text{ s}^{-1}$                                                                          | C1<br>C1<br>A1 | [3] |
| 000  |     |                                                                                                                                                                                              |                |     |
| Q30. |     |                                                                                                                                                                                              |                |     |
| 7    | (a) | ${}_{2}^{3}\text{He} + {}_{2}^{3}\text{He} \rightarrow {}_{2}^{4}\text{He} + 2 {}_{1}^{1}\text{p} + Q$                                                                                       |                |     |
|      |     | A numbers correct (4 and 1) Z numbers correct (2 and 1)                                                                                                                                      | B1<br>B1       | [2] |
|      |     |                                                                                                                                                                                              |                |     |
|      | (b) | both <u>nuclei</u> have 2 protons the two isotopes have 1 neutron and two neutrons [allow 1 for 'same number of protons but different number of neutrons']                                   | B1<br>B1       | [2] |
|      |     |                                                                                                                                                                                              |                |     |
|      | (c) | proton number and neutron number energy – mass momentum                                                                                                                                      | B1<br>B1<br>B1 | [2] |
|      |     | <b>∼</b> ′                                                                                                                                                                                   |                |     |

Q31.

(d) (i) y radiation

(ii) product(s) must have kinetic energy

(e)  $13.8 \text{ MeV} = 13.8 \times 1.6 \times 10^{-19} \times 10^6 \ (= 2.208 \times 10^{-12})$   $60 = n \times 13.8 \times 1.6 \times 10^{-13}$  $n = 2.7(2) \times 10^{13} \ \text{s}^{-1}$ 



| 6    | (a) | (i)              | electron                                                                                                                                                                                                                     | В1       | [1] |
|------|-----|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
|      |     | (ii)             | any <b>two:</b> can be deflected by electric and magnetic fields or negatively charged / absorbed by few $(1-4)$ mm of aluminum / 0.5 to 2 m or metres for range in air / speed up to 0.99c / range of speeds / energies     |          |     |
|      |     |                  |                                                                                                                                                                                                                              | B2       | [2] |
|      |     | (iii)            | decay occurs and cannot be affected by external / environmental factors or two stated factors such as chemical / pressure / temperature / humidity                                                                           | В1       | [1] |
|      | (b) |                  | nd 0 for superscript numbers<br>nd –1 for subscript numbers                                                                                                                                                                  | B1<br>B1 | [2] |
|      | (c) | ene              | $ergy = 5.7 \times 10^3 \times 1.6 \times 10^{-19} (= 9.12 \times 10^{-16} \text{ J})$                                                                                                                                       | C1       |     |
|      |     | v <sup>2</sup> = | $=\frac{2\times9.12\times10^{-16}}{9.11\times10^{-31}}$                                                                                                                                                                      | C1       |     |
|      |     | v =              | $= 4.5 \times 10^7 \mathrm{ms^{-1}}$                                                                                                                                                                                         | A1       | [3] |
|      | (d) | 1 n<br>(sp       | th have 1 proton and 1 electron eutron in hydrogen-2 and 2 neutrons in hydrogen-3 ecial case: for one mark 'same number of protons / atomic number erent number of neutrons')                                                | B1<br>B1 | [2] |
| Q32. |     |                  |                                                                                                                                                                                                                              |          |     |
| 7    | (a) |                  | the direction of the fields is the same OR fields are uniform OR constant electric field strength OR $E = V / d$ with symbols explained                                                                                      | В1       | [1] |
|      |     |                  | reduce p.d. across <u>plates</u><br>increase separation <u>of plates</u>                                                                                                                                                     | B1<br>B1 | [2] |
|      | (   |                  | α opposite charge to β (as deflection in opposite direction)                                                                                                                                                                 | B1       |     |
|      |     |                  | $\beta$ has a range of velocities OR energies (as different deflections) and $\alpha$ all have same velocity OR energy (as constant deflection) $\alpha$ are more massive (as deflection is less for greater field strength) | B1<br>B1 | [3] |
|      | (b) |                  | 234 and X = 90<br>4 and Z = 2                                                                                                                                                                                                | B1<br>B1 | [2] |

(c) A = 32 and B = 16 and C = 0 and D = -1

B1 [1]



wind the sale explicitle.

