

Q1.

7	(a)	$\lambda = h/p \text{ or } \lambda = h/mv$ with λ , h and (or mv) p identified	M1 A1	[2]
	(b)	$E = \frac{1}{2} mv^{2}$ $= p^{2}/2m \text{ or } v = \sqrt{(2E/m)}, \text{ hence}$ $\lambda = h/\sqrt{(2mE)}$	C1 M1 A0	[2]
	(c)	E = qV $(0.4 \times 10^{-9})^2 \times 2 \times 9.11 \times 10^{-31} \times 1.6 \times 10^{-19} \times V = (6.63 \times 10^{-34})^2$ V = 9.4 V (2 s.f. scores 2/3)	C1 C1 A1 otal	[3] [7]
Q2 .			~	
7	(a) 'u	niform' distribution	B1	[1]
	(b) co	oncentric rings	B1	[1]
Q3.	λ	gher speed, more momentum = h/p o \(\lambda \) decreases and ring diameter decreases	M1 M1 A1	[3]
Q3.				
	5 (a)	(i) packet/discrete quantity/quantum (of energy) of e.m. radiation	B1	[1]
	((ii) either $E = (6.63 \times 10^{-34} \times 3 \times 10^8)/(250 \times 10^{-9})$ or $E = (6.63 \times 10^{-34} \times 8.57 \times 10^{14})$ $E = 5.68 \times 10^{-19} \text{ J}$	M1 A0	[1]
	(i	iii) 0.5	B1	[1]
	(b)	(i) energy of photon to cause emission of electron from surface either with zero k.e or photon energy is minimum	M1 A1	[2]
	(correct enversion eV → J or J → eV seen once photon energy must be greater than work function 350 nm wavelength and potassium metal 	B1 C1 A1	[3]

Q4.

7	(a) ch	arge is	quantised / dis	screte	quar	ntities					B1	[1]
	(b) (i)		el so that the ontal so that	either	oil d		not drift s				B1	
					or	elec	tric force	e is equal	to weigl	nt		B1	[2]
		(ii)	$qE = q \times 85$ $q = 4$	mg 50 / (5.4 × 10 ⁻¹⁹ C <u>a</u>	³) = 7 and is r	.7 × nega	10 ⁻¹⁵ × 9 <u>tive</u>	9.8				C1 C1 A1	[3]
	(c) ch	arge cha	anges by 1.6 on electron is	× 10 ⁻¹⁹ s 1.6 ×	C bo	etween o	droplets /	integral	multiples		M1 A0	[1]
Q5.													
8	(a	if e	exposure oton has	ry predicts an e time is suffic s (specific val if energy grea	iently le ue of) e	ong energ	gy depen	dent on f	requenc	у		M1 A1 M1	
				om surface	ater tr	an u	mesnoid	/ WOIK	idiretion	renergy	to remove	A1	[4]
	(b	of	electron	packet/quantu nagnetic radia nergy = h×t	tion		y					M1 A1 B1	[3]
		Wa	evelengt	icle has an (as h = h / p the momentu				gth				B1 M1 A1	[3]
Q6.													
7	(a)			electron can				tinuously			В	1	
		elec	ctron will	electron will a l be emitted a ciently long de	t all fre						M A	11 1	[3]
	(b)	(i)	either or or	wavelength i frequency is photon energ	below	the t	hreshold	frequen			В	1	[1]
		(ii)	(6.63 ×	= φ + E _{MAX} 10 ⁻³⁴ × 3.0 × × 10 ⁻¹⁹ J (allo	10 ⁸)/	(240 × 10	× 10 ⁻⁹) = ⁻¹⁹ J)	= φ + 4.44	4 × 10 ⁻¹⁹		C C A	1	[3]
	(c)	(i)		energy large ximum) kineti		gy is	larger				M A	11 1	[2]
		(ii)		hotons (per u ximum) currer			r				M A	11 1	[2]

Q7.

	7		ivelength of wave associated with a particle at is moving		M1 A1	[2]
		(b) (i)	energy of electron = $850 \times 1.6 \times 10^{-19}$ = 1.36×10^{-16} J		M1	
			energy = $p^2 / 2m$ or $p = mv$ and $E_K = \frac{1}{2}mv^2$ momentum = $\sqrt{(1.36 \times 10^{-16} \times 2 \times 9.11 \times 10^{-31})}$ = 1.6×10^{-23} Ns		M1 A0	[2]
		(ii)	$\lambda = h/p$		C1	
			wavelength = $(6.63 \times 10^{-34}) / (1.6 \times 10^{-23})$ = 4.1×10^{-11} m		A1	[2]
		ele inc fluc par	agram or description showing: ectron beam in a vacuum eident on thin metal target / carbon film porescent screen ttern of concentric rings observed ttern similar to diffraction pattern observed with visible light		B1 B1 B1 M1 A1	[5]
		μα	ttern similar to diffraction pattern observed with visible light	C	, ,	[o]
Q8.	•			•		
8	(a	of ele	et/quantum/discrete amount of energy ectromagnetic radiation		M1 A1	
			w 1 mark for 'packet of electromagnetic radiation') gy = Planck constant × frequency (seen here or in 5)		B1	[3]
	(b	ener	gy = Planck constant × frequency		B1	
			es specific energy change between pergy levels iscrete levels		B1 A0	[2]
Q9.	•					
6	(a)	betwe	op charged by friction/beta source een parallel <u>n etal</u> plates s are horizontal		31 31	
		adjus until d	table potential difference/field between plates bil drop is stationary	1	31 31	
		symb	q × V/d ols explained op viewed through microscope	(1) (1)	31	
		m det	termined from terminal speed of drop (when p.d. is zero) two extras, 1 each)	(1)	32	[7]
	(b)	3.2 ×	10 ⁻¹⁹ C	,	A1	[1]

Q10.

1	(a) minim	ium energy to remove an electron from the metal/surface	ВТ	[1]
	h = 4	ent = 4.17×10^{-15} (allow $4.1 \rightarrow 4.3$) $.15 \times 10^{-15} \times 1.6 \times 10^{-19}$ or $h = 4.1$ to 4.3×10^{-15} eV s $.6 \times 10^{-34}$ J s	C1 A1 A0	[2]
	(c) graph	straight line parallel to given line with intercept at any higher frequency intercept at between 6.9 × 10 ¹⁴ Hz and 7.1 × 10 ¹⁴ Hz	B1 B1	[3]

Q11.

7	(a)	(i)	lowest frequency of e.m. radiation giving rise to emission of electrons (from the surface)	M1 A1	[2]
		(ii)	E = hf	C1	
			threshold frequency = $(9.0 \times 10^{-19}) / (6.63 \times 10^{-34})$ = 1.4×10^{15} Hz	A1	[2]
	(b)	eith or or em	ner $300 \text{ nm} \equiv 10 \times 10^{15} \text{Hz}$ (and $600 \text{ nm} \equiv 5.0 \times 10^{14} \text{Hz}$) $300 \text{ nm} \equiv 6.6 \times 10^{-19} \text{ J}$ (and $600 \text{ nm} \equiv 3.3 \times 10^{-19} \text{ J}$) $zinc \lambda_0 = 340 \text{ nm}$, platinum $\lambda_0 = 220 \text{ nm}$ (and sodium $\lambda_0 = 520 \text{ nm}$) ission from sodium <u>and</u> zinc	M1 A1	[2]
	(c)	few	ch photon has larger energy ver photons per unit time ver electrons emitted per unit time	M1 M1 A1	[3]

Q12.

 (b) (i) 1. arrow from -0.54 eV to -0.85 eV, labelled L 2. arrow from -0.54 eV to -3.4 eV, labelled S (two correct arrows, but only one label – allow 2 marks) (two correct arrows, but no labels – allow 1 mark) (ii) E = hc / λ (3.4 - 0.54) × 1.6 × 10⁻¹⁹ = (6.63 × 10⁻³⁴ × 3.0 × 10⁸) / λ λ = 4.35 × 10⁻⁷ m 	B1 B1 C1 C1 A1	[1
(two correct arrows, but only one label – allow 2 marks) (two correct arrows, but no labels – allow 1 mark) (ii) $E = hc / \lambda$ (3.4 – 0.54) × 1.6 × 10 ⁻¹⁹ = (6.63 × 10 ⁻³⁴ × 3.0 × 10 ⁸) / λ	C1 C1	
$(3.4 - 0.54) \times 1.6 \times 10^{-19} = (6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / \lambda$	C1	[3
		Į.
(c) −1.50 → −3.4 = 1.9 eV −0.85 → −3.4 = 2.55 eV (allow 2.6 eV) −0.54 → −3.4 = 2.86 eV (allow 2.9 eV) 3 correct, 2 marks with −1 mark for each additional energy 2 correct, 1 mark but no marks if any additional energy differences	B2	[2
Q13.		
2 (a) $E = hc/\lambda = (6.63 \times 10^{-34} \times 3.0 \times 10^{8})/(486 \times 10^{-9})$		[2]
(b) energy level drawn at 4.09×10^{-19} J		[3]
Q14.		
6 (a) packet/quantum of energy		[2]
(b) e.g. threshold frequency outlined max. k.e. independent of intensity max. k.e. dependent on frequency (n.b. NOT proportional) photoelectric current depends on intensity instantaneous emission (1 each, max 3)		[3]
(c) (i) photons have same energy so E_{max} unchanged intensity OR number of photons per unit time is halved, so $\frac{1}{2}n$ OR n reduced		
(ii) photons have higher energy so E_{max} increases		[4]

Q15.

7	(a)	(i)	quantum/packet/discrete amount of energy electromagnetic mentioned	M1 A1	[2]
		(ii)	max. k.e. corresponds to electron emitted from surface energy is required to bring electron to surface	B1 B1	[2]
	(b)	so ra	gher frequency, fewer photons (per second) for same intensity ate of emission decreases w argument based on photoelectric efficiency)	M1 A1	[2]
Q1	6.				
7	(a)		. 'instantaneous' emission (of electrons) threshold frequency below which no emission (max) electron energy dependent on frequency (max) electron energy not dependent on intensity rate of emission (of electrons) depends on intensity y three sensible suggestions, 1 each)	В3	[3]
			, , , , , , , , , , , , , , , , , , , ,		
	(b)	(i)	'packet' / quantum of energy of electromagnetic energy / radiation	M1 A1	[2]
		(ii)	discrete wavelengths mean photons have particular energies energy of photon determined by energy change of (orbital) electron so discrete energy levels	M1 M1 A0	[2]
	(c)	(i)	three energy changes shown correctly arrows 'pointing' in correct direction wavelengths correctly identified	B1 B1 B1	[3]
		(ii)	chooses $\lambda = 486 \text{ nm}$ $\Delta E = hc / \lambda$ = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (4.86 \times 10^{-9})$	C1 C1	
			= $4.09 \times 10^{-19} \text{ J}$ (allow 2 s.f.)	A1	[3]
Q1	7.				
7	(a)	pho	h line corresponds to a (specific) photon energy ton emitted when electron changes its energy level rete energy changes so discrete levels	B1	[3]
	(b)	(i)	$E = hc / \lambda$ (allow ratio ideas) = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (486 \times 10^{-9})$ = 4.09×10^{-19} J		[2]
		(ii)	four transitions to/from – 5.45 × 10 ⁻¹⁹ J level		r-1
			all transitions shown from higher to lower energy (level)		[2]
				[Total	: 7]

Q18.

7	(a)	(i)	e.g. electron / particle diffraction	B1	[1]
		(ii)	e.g. photoelectric effect	B1	[1]
	(b)	(i)	6	A1	[1]
		(ii)	change in energy = $4.57 \times 10^{-19} \text{ J}$ $\lambda = hc/E$	C1	
			= $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (4.57 \times 10^{-19})$ = 4.4×10^{-7} m	A1	[2]
Q19.	•				
8	(a)		imum frequency for electron to be emitted (from surface) electromagnetic radiation / light / photons	M1 A1	[2]
	(b)	eith	hc / λ or E = hf and c = f λ er threshold wavelength = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8})$ / (5.8×10^{-19}) = 340 nm	C1	
		or or app	energy of 340 nm photon = 4.4 × 10 ⁻¹⁹ J threshold frequency = 8.7 × 10 ¹⁴ Hz 450 nm → 6.7 × 10 ¹⁴ Hz ropriate comment comparing wavelengths / energies / frequencies no effect on photo-electric current	A1 B1 B1	[4]
Q20.	•				
7		photo	line represents photon of specific energy on emitted as a result of energy change of electron ific energy changes so discrete levels	M1 M1 A1	[3]
	(b)	(i) a	arrow from -0.85 eV leve to -1.5 eV level	B1	[1]
		(ii)	$\Delta E = hc/\lambda$ = (1.5 - 0.85) \ 1.6 \times 10^{-19} = 1.04 \times 10^{-1} \] = 1.04 \times 10^{-1} \]	C1 C1	
		,	$\lambda = (6.63 \times 10^{-34} \times 3.0 \times 10^{8})/(1.04 \times 10^{-19})$ = 1.9 × 10 ⁻⁶ m	A1	[3]
	1 6	two o	trum appears as continuous spectrum crossed by dark lines dark lines rons in gas absorb photons with energies equal to the excitation energies photons re-emitted in all directions	B1 B1 M1 A1	[4]

Q21.

7	(a)	(i)			antum of energy nagnetic radiation			M1 A1	[2]
		(ii)	min	<u>nimum</u> e	energy to cause emiss	sion of an electron (from s	surface)	B1	[1]
	(b)	(i)		$\lambda = \Phi + $ nd h ex				M1 A1	[2]
		(ii)	1.	or or		c-axis intercept from graph to the line and substitute E _{max}		C1 A1	[2]
			2.	either	gradient of graph is gradient = 4.80×1 $h = 1/(\text{gradient} \times 3)$	$10^{24} \rightarrow 5.06 \times 10^{24}$		C1 M1	
				or	$= 6.6 \times 10^{-34} \mathrm{Js}$	\rightarrow 6.9 × 10 ⁻³⁴ Js at the line and substitute	es values of $1/\lambda$ and		
			(Do	not all	$h = 6.6 \times 10^{-34} \text{Js}$ credit for the correct to	$_{ m max}$ are correct within half a $ ightarrow 6.9 imes 10^{-34} { m Js}$ use of any appropriate metions in part 2 that lead to	ethod)	(C1) (M1) (A1)	[3]
Q22	<u>.</u>								
8	(a)				y/packet/quantum o on = Planck constant	f energy of electromagnet × frequency	ic radiation	B1 B1	[2]
	(b) threshold frequency rate of emission is proportional to intensity (1) max. kinetic energy of electron dependent on frequency max. kinetic energy independent of intensity (1) (any three, 1 each, max 3)							В3	[3]
	(c)			$= hc/\lambda$	at in	or $hc/\lambda = eV$		C1	
		ene	ergy :		10 ⁻¹⁹ or 2.8 eV so no emission	work function of 3.5 eV to give $\lambda = 355 \text{ nm}$ 355 nm < 450 nm so no		M1 A1	[3]
		thre	shol	ld freque	n = 3.5 eV ency = 8.45×10 ¹⁴ Hz :10 ¹⁴ Hz < 8.45 × 10 ¹⁴ Hz			C1 M1 A1	

Q23.

7	(a)	wavelength associated with a particle that is moving	M1 A1	[2]
	(b)	(i) kinetic energy = $1.6 \times 10^{-19} \times 4700$ = 7.52×10^{-16} J either energy = $p^2/2m$ or $E_K = \frac{1}{2}mv^2$ and $p = mv$ $p = \sqrt{(7.52 \times 10^{-16} \times 2 \times 9.1 \times 10^{-31})}$ = 3.7×10^{-23} Ns	C1 C1 C1	
		$\lambda = h/p$ = $(6.63 \times 10^{-34}) / (3.7 \times 10^{-23})$ = 1.8×10^{-11} m	C1 A1	[5]
		(ii) wavelength is about separation of atoms can be used in (electron) diffraction	B1 B1	[2]
Q24.			<u>~</u>	
7 (or concentric circles are evidence of diffraction	M1 A1 (M1) (A1)	[2]
($\lambda = h/p$ so λ decreases hence radii decrease (special case: wavelength decreases so radii decreases scores 1/3) or (speed increases so) energy increases $\lambda = h / \sqrt{(2Em)}$ so λ decreases	M1 M1 A1 (B1) (M1) (A1)	[3]
(either $E = p^2 / 2m$ or $p = \sqrt{(2Em)}$	C1 C1 C1	
Q25.		A	A1	[4]

7	(a)	(i)	minimum photon energy minimum energy to remove an electron (from the surface)	B1 B1	[2]
		(ii)	either maximum KE is photon energy – work function energy or max KE when electron ejected from the surface energies lower than max because energy required to bring electron to the surface	B1 B1	[2]
	(b)	(i)	threshold frequency = 1.0×10^{15} Hz (allow $\pm 0.05 \times 10^{15}$) work function energy = hf_0 = $6.63 \times 10^{-34} \times 1.0 \times 10^{15}$	C1 C1	
			= $6.63 \times 10^{-19} \text{J}$ (allow alternative approaches based on use of co-ordinates of points on the line)	A1	[3]
		(ii)	sketch: straight line with same gradient displaced to right	M1 A1	[2]
		(iii)	intensity determines number of photons arriving per unit time intensity determines number of electrons per unit time (not energy)	B1 B1	[2]
Q26					
8	(a)		crete and equal amounts (of charge) w: discrete amounts of 1.6 × 10 ⁻¹⁹ C/elementary charge/e integral multiples of 1.6 × 10 ⁻¹⁹ C/elementary charge/e	B1	[1]
	(b)	4.8	ght = qV/d $\times 10^{-14} = (q \times 680)/(7.0 \times 10^{-3})$ 4.9×10^{-19} C	C1 A1	[2]
	(c)		mentary charge = 1.6×10^{-19} C (allow 1.6×10^{-19} C to 1.7×10^{-19} C) er the values are (approximately) multiples of this	M0	
		or	it is a common factor the highest common factor	C1 A1	[2]
Q27.	•				
9	(a)		no time delay between illumination and emission max. (kinetic) energy of electron dependent on frequency max. (kinetic) energy of electron independent of intensity rate of emission of electrons dependent on/proportional to intensity three separate statements, one mark each, maximum 3)	В3	[3]
	(b)	(i)	(photon) interaction with electron may be below surface energy required to bring electron to surface	B1 B1	[2]

(i	ii)	1. threshold frequency = $5.8 \times 10^{14} \text{ Hz}$	A1	[1]
		2. $\Phi = hf_0$ = $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$	C1	
		$= 3.84 \times 10^{-19} (J)$ $= (3.84 \times 10^{-19})/(4.6 \times 10^{-19})$	C1	
		= $(3.84 \times 10^{-19})/(1.6 \times 10^{-19})$ = 2.4 eV	A1	[3]
		or		
		$hf = \Phi + E_{MAX}$	(C1)	
		chooses point on line and substitutes values E_{MAX} , f and h into equation with the units of the hf term converted from J to eV Φ = 2.4 eV	(C1) (A1)	
Q28.			\sim	
8	(a)	photon energy = hc/λ	,	
5	(-)	$= (6.63 \times 10^{-34} \times 3.0 \times 10^{8})/(590 \times 10^{-9})$	C1 C1	
		$= 3.37 \times 10^{-19} \text{J}$ $\text{number} = (3.2 \times 10^{-3})/(3.37 \times 10^{-19})$ $= 9.5 \times 10^{15} \text{ (allow } 9.4 \times 10^{15})$ (i) $p = h/\lambda$ $= (6.63 \times 10^{-34})/(590 \times 10^{-9})$ $= 1.12 \times 10^{-27} \text{ kg ms}^{-1}$ $\text{total momentum} = 9.5 \times 10^{15} \times 1.12 \times 10^{-27}$	A1	[3]
	(b)	(i) $p = h/\lambda$	C1	
	(10)	$= (6.63 \times 10^{-34})/(590 \times 10^{-9})$ $= 1.12 \times 10^{-27} \text{ kg ms}^{-1}$	C1	
		total momentum = $9.5 \times 10^{15} \times 1.12 \times 10^{-2r}$ = $1.06 \times 10^{-11} \text{ kg ms}^{-1}$		
		3 0	A1	[3]
Q29.		(ii) force = $1.06 \times 10^{-11} \mathrm{N}$	A1	[1]
	•			
8	(a)	photon 'absorbed' by electron photon has energy equal to difference in energy of two energy levels electron de-excites emitting photon (of same energy) in any direction	B1 B1 B1	[3]
		And a second of the second of		[-]
	(b)	(i) $E = hc/\lambda$	C1	
		= $(6.63 \times 10^{-34} \times 3 \times 10^{8})/(435 \times 10^{-9})$ = 4.57×10^{-19} J (allow 2 s.f.)	C1	
		= $(4.57 \times 10^{-19})/(1.6 \times 10^{-19})$ (eV) = 2.86 eV (allow 2 s.f.)	A1	[4]
		(ii) arrow pointing in either direction between $-3.41\mathrm{eV}$ and $-0.55\mathrm{eV}$	B1	[1]

Q30.

7		ither charge exists in discrete and <u>equal</u> quantities r multiples of elementary charge/e/1.6 × 10 ⁻¹⁹ C	B1	[1]
	(b) (force due to magnetic field must be upwards B-field into the plane of the paper	B1 B1	[2]
	(i	i) sketch showing: deflection consistent with force in (b)(i) reasonable curve	B1 B1	[2]
Q31.				
8		iscrete amount/packet/quantum of <u>energy</u> f electromagnetic radiation/EM radiation	M1 A1	[2]
	(b) (i) $E = hc/\lambda$ = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8})/(570 \times 10^{-9}) = 3.49 \times 10^{-19} \text{ J}$	A1	[1]
	(ii) 1. number = $(2.7 \times 10^{-3})/(3.5 \times 10^{-19})$ = 7.7×10^{15}	C1 A1	[2]
		2. momentum of photon = h/λ = $(6.63 \times 10^{-34})/(570 \times 10^{-9})$	C1	
		$= 1.16 \times 10^{-27} \text{kgm s}^{-1}$ change in momentum $= 1.16 \times 10^{-27} \times 7.7 \times 10^{15}$ $= 8.96 \times 10^{-12} \text{kgm s}^{-1}$	C1 A1	[3]
		(allow E = pc route to 9×10^{-12})		
	(c) p	ressure = (change in momentum per second)/area = $(8.96 \times 10^{-12})/(1.3 \times 10^{-5})$ = 6.9×10^{-7} Pa	C1 A1	[2]
Q32.				
1	(a)	charge is quantised/enabled electron charge to be measured	В1	[1]
	(b)	<u>all</u> are (approximately) $n \times (1.6 \times 10^{-19} \text{ C})$ so $e = 1.6 \times 10^{-19} \text{ C}$ (allow 2 sig. fig. only summing charges and dividing ten, without explanation scores 1/2	M1 A1	[2]
_		Total		[3]

wind the sale existing earliest and the continuous streets and the continuous streets and the continuous streets are also as a second street and the continuous streets are also as a second street and the continuous streets are also as a second street and the continuous streets are also as a second street and the continuous streets are also as a second street and the continuous streets are also as a second street and the continuous streets are also as a second street and the continuous streets are also as a second street and the continuous streets are also as a second street and the continuous streets are also as a second street and the continuous streets are also as a second street and the continuous streets are also as a second street and the continuous streets are also as a second street and the continuous streets are also as a second street are also as a

