

Q1.

1 Complete Fig. 1.1 to show each quantity and its unit.

unit [4]

quantity	unit .		
speed	m s ⁻¹		
density			
	s ⁻¹		
electric field strength	»		
	kg m s ⁻¹		

Fig. 1.1

\sim	^
11	٠,
.,	_

1	(a)	State the difference between a scalar quantity and a vector quantity.
		scalar:
		vector:
		~'O'
		[2]
		The state of the s
		.3.

1

(b) Two forces of magnitude 6.0 N and 8.0 N act at a point P. Both forces act away from point P and the angle between them is 40°.

Fig. 1.1 shows two lines at an angle of 40° to one another.

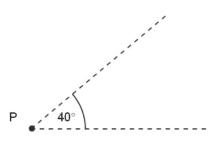


Fig. 1.1

On Fig. 1.1, draw a vector diagram to determine the magnitude of the resultant of the two forces.

magnitude of resultant = N [4]

Q3.

3 A student has been asked to determine the linear acceleration of a toy car as it moves down a slope. He sets up the apparatus as shown in Fig. 3.1.

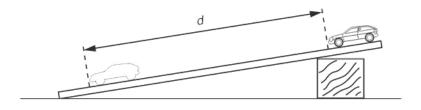
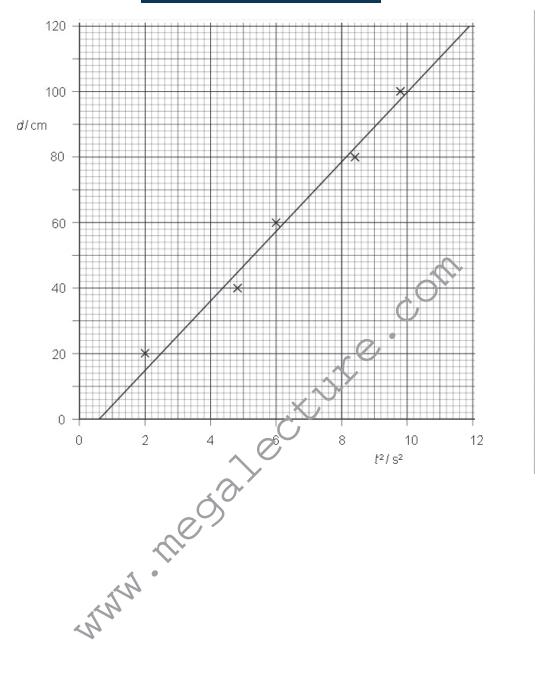



Fig. 3.1

The time t to move from rest through a distance d is found for different values of d. A graph of d (y-axis) is plotted against t^2 (x-axis) as shown in Fig. 3.2.

(a)		ory suggests that the graph is a straight line through the origin. ne the feature on Fig. 3.2 that indicates the presence of
	(i)	random error,
	(ii)	systematic error.
(b)	(i)	Determine the gradient of the line of the graph in Fig. 3.2.
		gradient =[2]
	(ii)	Use your answer to (i) to calculate the acceleration of the toy down the slope. Explain your working.
		acceleration = m s ⁻² [3]

Q4.

1	N	Make estimates of the following quantities.	
	(a) the speed of sound in air	
		tad to the control of	
		speed =[1]	
	(b) the density of air at room temperature and pressure	
		density =[1]	
	(c) the mass of a protractor	
		mass =[1]	
	(d) the ∨olume, in cm³, of the head of an adult person	
	•		
		volume = cm ³ [1]	
Q5.			
Q J.			
1	(a)	Derive the SI base unit of force.	
		* * * * * * * * * * * * * * * * * * *	
		William Colonia Coloni	
		SI base unit of force =[1]	

(b)	A spherical ball of radius	r experiences	a resistive force	F due to	the air	as it r	noves
	through the air at speed v.	The resistive	force F is given I	by the exp	ression		

$$F = crv,$$

where c is a constant.

Derive the SI base unit of the constant c.

SI base unit of $c = \dots [1]$

(c) The ball is dropped from rest through a height of $4.5\,\mathrm{m}$.

(i) Assuming air resistance to be negligible, calculate the final speed of the ball.

speed = m s⁻¹ [2]

Exam. U

(ii) The ball has mass 15 g and radius 1.2 cm.

The numerical value of the constant c in the equation in **(b)** is equal to 3.2×10^{-4} when measured using the SI system of units.

Show quantitatively whether the assumption made in (i) is justified.

[3]

Q6.

1 The uncalibrated scale and the pointer of a meter are shown in Fig. 1.1.

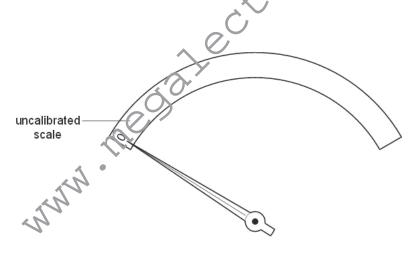


Fig. 1.1

The pointer is shown in the zero position.

The meter is to be used to indicate the volume of fuel in the tank of a car.

A known volume V of fuel is poured into the tank and the deflection θ of the pointer is noted. Fig. 1.2 shows the variation with θ of V.

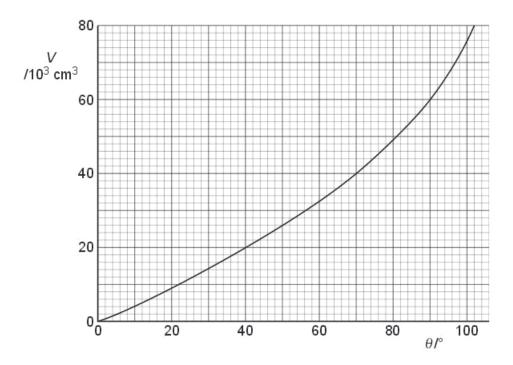


Fig. 1.2

(a) On Fig. 1.1,
 (i) calibrate the scale at 20 × 10³ cm³ intervals,
 (ii) mark a possible position for a volume of 1.0 × 10⁵ cm³.
 (b) Suggest one advantage of this scale, as compared with a uniform scale, for measuring fuel volumes in the tank of the car.

Q7.

	1	Mak	te reasonable estimates of the following quantities.
		(a)	the frequency of an audible sound wave
			frequency =Hz [1]
		(b)	the wavelength, in nm, of ultraviolet radiation
			wavelength =nm [1]
		(c)	the mass of a plastic 30 cm ruler
			mass = g [1]
		(d)	the density of air at atmospheric pressure
			density =kg m ⁻³ [1]
Q8.			COV
	1	(a)	State the most appropriate instrument, or instruments, or the measurement of the following.
			(i) the diameter of a wire of diameter about 1 mm
			[1]
			(ii) the resistance of a filament lamp
			(iii) the peak value of an alternating voltage
			[1]
	(b		he mass of a cube of aluminium is found to be 580 g with an uncertainty in the easurement of 10 g. Each side of the cube has a length of $(6.0\pm0.1)\text{cm}$.
		C a	alculate the density of aluminium with its uncertainty. Express your answer to an ppropriete number of significant figures.
			density = \pm g cm ⁻³ [5]

Use

Q9.

1	(a)	Two of the SI base quantities and their units are mass (kg) and length (m).		
		Name three other SI base quantities and their units.		
		1. quantity unit		
		2. quantity unit		
		3. quantity unit		
		[3]		

(b) The pressure p due to a liquid of density ρ is related to the depth h by the expression

$$p = \rho g h$$
,

where g is the acceleration of free fall.

Use this expression to determine the derived units of pressure. Explain your working.

[5]

Q10.

A unit is often expressed with a prefix. For example, the gram may be written with the prefix 'kilo' as the kilogram. The prefix represents a power-of-ten. In this case, the power-of-ten is 10³.

Complete Fig. 1.1 to show each prefix with its symbol and power-of-ten.

prefix	symbol	power-of-ten
kilo	k	10 ³
nano	n	
centi		10 ⁻²
	М	10 ⁶
	т	10 ¹²

Fig. 1.1

[4]

Q11.

2 (a) Complete Fig. 2.1 to show whether each of the quantities listed is a vector or a scalar.

	X /
	vector / scalar
distance moved	
speed	
acceleration	

Fig. 2.1

[3]

Q12.

1	A m	etal	wire has a cross-section of diameter approximately 0.8 mm.
	(a)	Stat	e what instrument should be used to measure the diameter of the wire.
	(b)	Stat	e how the instrument in (a) is
		(i)	checked so as to avoid a systematic error in the measurements,
			[1]
		(ii)	used so as to reduce random errors.
			[2]
Q13.			
1	a re	esisto	voltmeter with a three-digit display is used to measure the potential difference across or. The manufacturers of the meter state that its accuracy is $\pm 1\%$ and ± 1 digit. ding on the voltmeter is 2.05V.
	(a)	For	this reading, calculate, to the nearest digit,
		(i)	a change of 1% in the ∨oltmeter reading,

(ii) the maximum possible value of the potential difference across the resistor.

	maximum value =V [1]
(b)	The reading on the voltmeter has high precision. State and explain why the reading may not be accurate.
	[2]

Q14.

1 Measurements made for a sample of metal wire are shown in Fig. 1.1.

quantity	measurement	uncertainty
length	1750mm	±3mm
diameter	0.38 mm	±0.01mm
resistance	7.5Ω	±0.2Ω

Fig. 1.1

- (a) State the appropriate instruments used to make each of these measurements.
 - *4*¹ [1]
 - ii) diameter
 -[1]
 - (iii) resistance

(b)	(i)	Show that the resistivity of the metal is calculated to be 4.86	× 10 ⁻⁷ Ωm.	
()	(-)	,	1172 (75.111)	
			[2]	
	/::X	0-11-44	- 	
	(ii)	Calculate the uncertainty in the resistivity.		
		uncertainty = ±	Ω m [4]	
(c)		e the answers in (b) to express the resistivity with its unaber of significant figures.	ncertainty to the appro	priate
		<u>. </u>		
		resistivity =±		2 m [1]
				[.]

14

Q15.

2 (a) A sphere of radius R is moving through a fluid with constant speed v. There is a frictional force F acting on the sphere, which is given by the expression

$$F = 6\pi DRv$$

where D depends on the fluid.

(i) Show that the SI base units of the quantity D are $kgm^{-1} s^{-1}$.

(ii) A raindrop of radius 1.5 mm falls vertically in air at a velocity of 3.7 m s⁻¹. The value of D for air is $6.6 \times 10^{-4} \,\mathrm{kg}\,\mathrm{m}^{-1}\,\mathrm{s}^{-1}$. The density of writer is $1000 \,\mathrm{kg}\,\mathrm{m}^{-3}$.

Calculate

1. the magnitude of the frictional force

the acceleration of the raindrop.

Q16.

(a) For each of the following, tick [✓] one box to indicate whether the experimental technique would reduce random error, systematic error or neither. The first row has been completed 🛭 🖾 🛦 as an example.

	random error	systematic error	neither
keeping your eye in line with the scale and the liquid level for a single reading of a thermometer		•	
averaging many readings of the time taken for a ball to roll down a slope			
using a linear scale on an ammeter			
correcting for a non-zero reading when a micrometer screw gauge is closed			

[2]

(b) The measurement of a particular time interval is repeated many times. The readings are found to vary. The results are shown in Fig. 1.1.

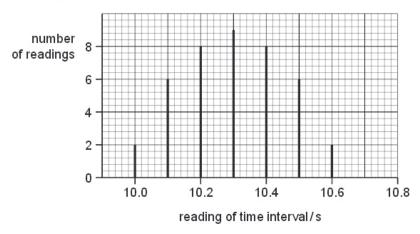


Fig. 1.1

The true value of the time interval is 10.1s.

	(i)	Sta	te how the readings on Fig. 1.1 show the presence of	Fo Exami
		1.	a systematic error,	Us
			[1]	
		2.	a random error.	
			[1]	
	(ii)	Sta	te the expected changes to Fig. 1.1 for experimental measurements that are	
	()	1.	more accurate,	
		•	, O ·	
			[1]	
		2.	more precise.	
			[1]	
Q17	' .			
1	(a)	(i)	State the SI base units of volume.	
	14074			
			base units of volume	[1]
		(ii)	Show that the SI base units of pressure are kg m ⁻¹ s ⁻² .	
			•	
			Ī	[1]

(b) The volume V of liquid that flows through a pipe in time t is given by the equation

$$\frac{V}{t} = \frac{\pi P r^4}{8Cl}$$

where P is the pressure difference between the ends of the pipe of radius r and length l. The constant C depends on the frictional effects of the liquid.

Determine the base units of C.

base units of C[3]

Q18.

1 The volume V of liquid flowing in time t through a pipe of radius r is given by the equation

$$\frac{V}{t} = \frac{\pi P r^4}{8Cl}$$

where P is the pressure difference between the ends of the pipe of length l, and C depends on the frictional effects of the liquid.

An experiment is performed to determine C. The measurements made are shown in Fig. 1.1.

$\frac{V}{t}$ / 10 ⁻⁶ m ³ s ⁻¹	<i>PI</i> 10 ³ N m ⁻²	r/mm	1/m
1.20 ± 0.01	2.50 ± 0.05	0.75 ± 0.01	0.250 ± 0.001

Fig. 1.1

(a) Calculate the value of C.

C=	 Nsm ⁻² I	21
-	 143111	٠,

(b) Calculate the uncertainty in C.

(c) State the value of C and its uncertainty to the appropriate number of significant figures.

Q19.

(b) Show that the ${
m SI}$ units of energy per unit volume are ${
m kg}\,{
m m}^{-1}\,{
m s}^{-2}.$

[2]

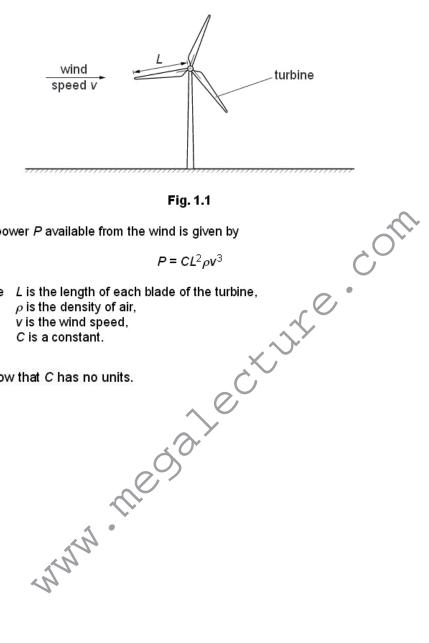
(c) For a wire extended elastically, the elastic energy per unit volume X is given by

$$X = C\varepsilon^2 E$$

where C is a constant, ε is the strain of the wire, and E is the Young modulus of the wire.

Show that C has no units.

[3]


Q20.

(a) Determine the SI base units of power.

SI base units of power[3]

(b) Fig. 1.1 shows a turbine that is used to generate electrical power from the wind.

The power P available from the wind is given by

$$P = CL^2 \rho V^3$$

where L is the length of each blade of the turbine,

(i) Show that C has no units.

[3]

(11)	SI units. The constant <i>C</i> is 0.931. The efficiency of the turbine is 55% and the electric power output <i>P</i> is $3.50 \times 10^5 \text{W}$.	Fi Exam した
	Calculate the wind speed.	
	wind speed = m s ⁻¹ [3]	
(iii)	Suggest two reasons why the electrical power output of the turbine is less than the power available from the wind.	
	1	
	2	
	[2]	

Q21.

1 (a) State the SI base units of force.

.....[1]

(b) Two wires each of length l are placed parallel to each other a distance x apart, as shown in Fig. 1.1.

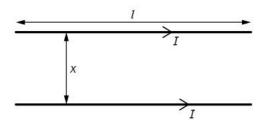


Fig. 1.1

Each wire carries a current I. The currents give rise to a force F on each wire given by

$$F = \frac{KI^2l}{x}$$

where K is a constant.

(i) Determine the SI base units of K.

units of *K*[2]

(ii) On Fig. 1.2, sketch the variation with x of F. The quantities I and I remain constant.



Fig. 1.2

[2]

(iii) The current I in both of the wires is varied.

On Fig. 1.3, sketch the variation with I of F. The quantities x and t remain constant.

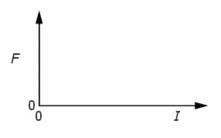


Fig. 1.3

[1]

Q22.

1	(a)	(i)	Define density.

(ii)	State th	e base ur	nits in which	density	is measured.	
------	----------	-----------	---------------	---------	--------------	--

.....

(b) The speed *v* of sound in a gas is given by the expression

$$v = \sqrt{\left(\frac{\gamma p}{\rho}\right)}$$

where p is the pressure of the gas of density ρ . γ is a constant.

Given that p has the base units of $kg m^{-1} s^{-2}$, show that the constant γ has no unit.

[3]

Q23.

2 A student uses a metre rule to measure the length of an elastic band before and after stretching it.

The lengths are recorded as

length of band before stretching, $L_0 = 50.0 \pm 0.1$ cm

length of band after stretching, $L_{\rm S}$ = 51.6 ± 0.1 cm.

Determine

(a) the change in length $(L_{\rm S}-L_{\rm 0})$, quoting your answer with its uncertainty,

(b) the fractional change in length, $\frac{(L_S - L_0)}{L_0}$,

(c) the uncertainty in your answer in (b).

Q24.

1	A student takes readings to measure the mean diameter of a wire using a micrometer screw gauge.		
	(a)	Mak	e suggestions, one in each case, that the student may adopt in order to
		(i)	reduce a systematic error in the readings,
		(ii)	allow for a wire of varying diameter along its length,
		(11)	
		/:::\	allow for a non sirgular gross section of the wire
		(iii)	allow for a non-circular cross-section of the wire.
			[3]
(b)			an diameter of the wire is found to be 0.50 \pm 0.02 mm. Calculate the percentage inty in
	(i)	the	diameter,
			uncertainty = %
	(ii)	the	area of cross-section of the wire.
			uncertainty = %
			[2]

Q25.

1	(a)	(i)	Define pressure.	Exam
			[1]	
		(ii)	State the units of pressure in base units.	
			[1]	
	(b)	The	pressure p at a depth h in an incompressible fluid of density $ ho$ is given by	
			$p = \rho g h$,	
			ere g is the acceleration of free fall. The base units to check the homogeneity of this equation.	
			O	
			[3]	
001				
Q26.				

1	(a)	Distinguish between systematic errors and random errors.
		systematic errors
		random errors
		[2]

(b) A cylinder of length L has a circular cross-section of radius R, as shown in Fig. 1.1.

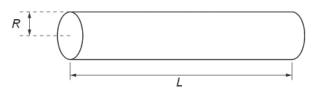


Fig. 1.1

The volume \boldsymbol{V} of the cylinder is given by the expression

$$V = \pi R^2 L$$
.

The volume and length of the cylinder are measured as

$$V = 15.0 \pm 0.5 \,\mathrm{cm}^3$$

 $L = 20.0 \pm 0.1 \,\mathrm{cm}$.

Calculate the radius of the cylinder, with its uncertainty.

Q27.

1	(a)	The	current in a wire is I. Charge Q passes one point in the wire in time t. State			
		(i)	the relation between I , Q and t ,			
			[1]			
		(ii)	which of the quantities I , Q and t are base quantities.			
			[2]			
b)	along	the	ent in the wire is due to electrons, each with charge q , that move with speed v wire. There are n of these electrons per unit volume. e having a cross-sectional area S , the current I is given by the equation			
			$I = nSqv^k$,			
	wher	e <i>k</i> i	s a constant.			
	(i) State the units of <i>I</i> , <i>n</i> , <i>S</i> , <i>q</i> and <i>v</i> in terms of the base units.					
	,,,,,,,					
	.03					
		q.	, O			
		, v .	~ Y			
(i	i) By	/ COI	[3] insidering the homogeneity of the equation, determine the value of k .			
•	•		· William			

k =[2]

Q28.

1 The volume of fuel in the tank of a car is monitored using a meter as illustrated in Fig. 1.1.

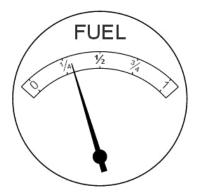


Fig. 1.1

The meter has an analogue scale. The meter reading for different volumes of fuel in the tank is shown in Fig. 1.2.

The meter has an analogue scale. The meter reading for different volumes of fuel in the tank is shown in Fig. 1.2.

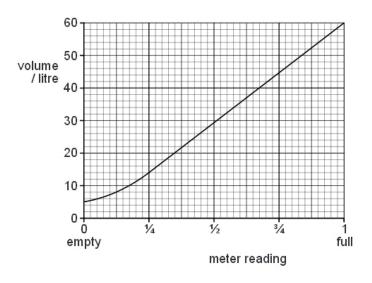


Fig. 1.2

The meter is calibrated in terms of the fraction of the tank that remains filled with fuel.

(a		e car uses 1.0 litre of fuel when travelling 14 km. The car starts a journey with a full [x, and]
	(i)	Calculate the ∨olume of fuel remaining in the tank after a journey of 210 km.
		volume = litres [2]
	(ii)	Use your answer to (i) and Fig. 1.2 to determine the change in the meter reading during the 210km journey.
		from <i>full</i> to[1]
(b)	The	re is a systematic error in the meter.
	(i)	State the feature of Fig. 1.2 that indicates that there is a systematic error.
		[1]
	(ii)	Suggest why, for this meter, it is an advantage to have this systematic error.
		[1]
Q29.		

1	A simple pendulum may be used to determine a value for the acceleration of free fall g .
	Measurements are made of the length L of the pendulum and the period T of oscillation.

The velues shipped	seritle thesis		ava aa abayya
The values obtained.	, with their	uncertainties,	are as shown.

 $T = (1.93 \pm 0.03) s$ $L = (92 \pm 1) cm$

- (a) Calculate the percentage uncertainty in the measurement of
 - (i) the period T,

uncertainty = % [1]

(ii) the length L.

uncertainty = % [1]

(b) The relationship between T, L and g is given by

$$g = \frac{4\pi^2 L}{T^2} .$$

Using your answers in (a), calculate the percentage uncertainty in the value of g.

uncertainty = % [1]

Ex

- (c) The values of L and T are used to calculate a value of g as $9.751 \,\mathrm{m\,s^{-2}}$.
 - (i) By reference to the measurements of L and T, suggest why it would not be correct to quote the value of g as $9.751 \,\mathrm{m \, s^{-2}}$.

[1]

(ii) Use your answer in (b) to determine the absolute uncertainty in g.

Hence state the value of g, with its uncertainty, to an appropriate number of significant figures.

 $g = \dots + m s^{-2}$ [2]

Q30.

1	(a)	Two of the SI base quantities are mass and time. State three other SI base quantities.
		1
		2
		3
		[3]
	(b)	A sphere of radius r is moving at speed v through air of density ρ . The resistive force F acting on the sphere is given by the expression
		$F = Br^2 \rho V^k$
		where \boldsymbol{B} and \boldsymbol{k} are constants without units.
		(i) State the SI base units of F , ρ and v .
		F
		ρ
		v[3]
(ii)	Use base units to determine the value of <i>k</i> .

Q31.

1	(a)	(i)	Distinguish between vector quantities and scalar quantities.
			[2]
		(ii)	State whether each of the following is a vector quantity or a scalar quantity.
			1. temperature
			[1]
			2. acceleration of free fall
			[1]
			3. electrical resistance
			[1]

(b) A block of wood of weight 25N is held stationary on a slope by means of a string, as shown in Fig. 1.1.

Foi Examir Use

35

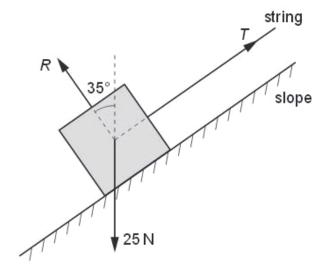


Fig. 1.1

The tension in the string is T and the slope pushes on the block with a force R that is normal to the slope.

Either by scale drawing on Fig. 1.1 or by calculation, determine the tension T in the string.

T = N [3

Q32.

1	Make estimates of the following quantities.				
	(a)	the thickness of a sheet of paper			
			thickness	=	mm [1]
	(b)	the time for sound to travel 100 m in air			
			time	=	s [1]
	(c)	the weight of 1000 cm ³ of water			
			weight	=	N [1]

Q33.

1 (a) The spacing between two atoms in a crystal is 3.8×10^{-10} m. State this distance in pm.


(b) Calculate the time of one day in Ms.

(c) The distance from the Earth to the Sun is 0.15 Tm. Calculate the time in minutes for light to travel from the Sun to the Earth.

(d) Underline all the vector quantities in the list below.

(e) The velocity vector diagram for an aircraft heading due north is shown to scale in Fig. 1.1. There is a wind blowing from the north-west.

The speed of the wind is 36 m s⁻¹ and the speed of the aircraft is 250 m s⁻¹.

- (i) Draw an arrow on Fig. 1.1 to show the direction of the resultant velocity of the aircraft.
- (ii) Determine the magnitude of the resultant velocity of the aircraft.

resultant velocity = ms⁻¹ [2]

Q34.

1	(a)	State two SI base units other than the kilogram, metre and second.	
		1	
		2	
	(b)	A metal wire has original length l_0 . It is then suspended and hangs vertically as shown in Fig. 1.1.	
		111111111	
		wire	
		Fig. 1.1	
ть		eight of the wire causes it to stretch. The elastic potential energy stored in the wire	
is		eight of the whe causes it to stretch. The elastic potential energy stored in the whe	
(i)	s	how that the SI base units of E are kg m ² s ⁻² . [2]	
		[2]	
		Ex.	

(ii) The elastic potential energy E is given by

$$E = C\rho^2 g^2 A l_0^3$$

where ρ is the density of the metal, g is the acceleration of free fall, A is the cross-sectional area of the wire and C is a constant.

Determine the SI base units of C.

SI base units of C[3]

Ex ax

Q35.

2 A source of radio waves sends a pulse towards a reflector. The pulse returns from the reflector and is detected at the same point as the source. The emitted and reflected pulses are recorded on a cathode-ray oscilloscope (c.r.o.) as shown in Fig. 2.1.

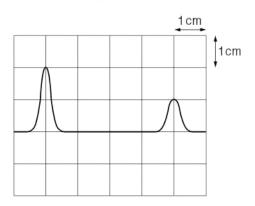


Fig. 2.1

The time-base setting is $0.20 \,\mu s \,cm^{-1}$.

121	Heina Fig. 2.1	determine the	dietanca	hotwoon th	A COLLICA	and the reflector.
lai	O31114 1 14. 2. 1	, determine me	uistance	DerMeell fil	e source	and the reflector.

(b)	Determine the time-base setting required to produce the same sep	aration of pulses on
	the c.r.o. when sound waves are used instead of radio waves.	
	The speed of sound is 300 m s ⁻¹ .	

	٧,	
	X	[2]
***************************************		[0]

Q36.

The time T for a satellite to orbit the Faith is given by

$$T = \sqrt{\left(\frac{KR^3}{M}\right)}$$

where R is the distance of the satellite from the centre of the Earth, M is the mass of the Earth,

K is a constant.

(a) Determine the SI base units of K.

ST base units of K	[2]

Exam U:

(b) Data for a particular satellite are given in Fig. 2.1.

quantity	measurement	uncertainty
Т	8.64 × 10 ⁴ s	± 0.5%
R	4.23 × 10 ⁷ m	± 1%
М	6.0 × 10 ²⁴ kg	± 2%

Fig. 2.1

Calculate K and its actual uncertainty in SI units.

K = SI units [4]

wind the sale critice.

wind the sale critice.