Q1.

1 (a) top half of leaf/just below (upper) epidermis; packed (densely); long axis in line with incident light/AW;

2 max

(b) contain large numbers of chloroplasts/large amount of chlorophyll; large vacuole; (only give if linked to next point) chloroplasts (in cytoplasm) close to cell wall/cell membrane; short diffusion pathway; (cell) elongated/arranged to intercept (maximum) light; thin (cell) wall; ref. movement of chloroplasts;

3 max

(c) contains photosystems/PS1 and PS2/chlorophyll and accessory pigments/ reaction centres; maintain carriers/receptors in position; site of photophosphorylation/light reaction; site of ETC; ref. proton pumping/proton gradient; large surface area; produce ATP/ref. ATP synthase;

4 max

(d) ref. to Rubisco; carbon dioxide combines with RuBP; driven/powered by ATP; and reduced NADP; forms PGA;

produce reduced NADP;

2 max

Total: 11

Q2.

Qu	estion		Marks
4	(a)	A epidermal cell;	
		B guard cell ;	2
	(b)	allows carbon dioxide into leaf;	
		as rest of leaf covered with waxy / waterproof cuticle;	
		down concentration gradient / diffuses ; for either O2 or CO2	
		controls water (vapour) loss;	
		ref. to faster diffusion through small pores / edge effect;	
		oxygen out ;	4 max
	(c)	ref. to chloroplasts;	
		sausage shaped / AW ;	
		joined only at ends;	
		unevenly thickened walls / thick above and below / thin furthest from the pore;	
		ref. vacuole ;	2 max
			Total: 8

Q3.

Que	Question		Marks
5	(a)	stroma of chloroplast ;	1
	(b)	combines with (5C compound) RuBP;	
		to form unstable 6C compound / forms 2 molecules of (3C) GP;	
		ref. enzyme / rubisco;	2 max
	(c)	reduced NADP and ATP;	
		(ATP is) source of energy;	
		(reduced NADP is for) reduction of GP(PGA) to triose phosphate (TP);	
		ref. use of ATP in regeneration of RuBP;	
		ref. to source of phosphate / phosphorylation;	3 max
	(d)	RuBP, accumulates / goes up ;	
		due to reduced combination with CO ₂ / AW; in either RuBP or GP, not both	
		GP, goes down / not as much being formed ;	
		due to conversion to TP;	3 max
			Total: 9

Q4.

2	(a)	(i)	at low light intensities; rate of photosynthesis is proportional to light intensity / light intensity is limiting; after 1 units of light; rate levels off / reaches plateau; relevant fig plus units;	[3 max]
		(ii)	(B) after 3 units light intensity not limiting; CO ₂ now limiting; (C) curve continues to increase until 5 units of light; light intensity limiting; correct description of law of limiting factors; detail. collisions of CO ₂ and enzymes; AVP; e.g., further detail of enzymes	[4 max]
	(b)		optimum temperature; method e.g. heaters / ventilation; optimum CO ₂ concentration; burners / combustion / add dry ice / pump in CO ₂ up to 1%; high light intensity / longer duration of light / artificial lighting; ref. irrigation; ref. fertilisers; ref. pest / disease control; ref. artificial pollination;	[2 max]
				[Total: 9]

Q5.

7	(a)	(i)	ref. wavelength 1 chlorophyll a peaks at 430nm and chlorophyll b peaks at 450nm;	
			2 chlorophyll a peaks at 660nm and chlorophyll b peaks at 635–640nm;	
			3 ref. linking 400–500nm with blue light / ref. linking 600–700nm with red light	
			4 (both have) little absorption, between 500–600nm / in green light; A little absorption, chlorophyll a 450–600 and chlorophyll b 500–600;	
			ref. light absorption 5 (both) peaks in blue light are higher than peaks in red light;	
			6 chlorophyll b higher than chlorophyll a in the blue end / chlorophyll a high chlorophyll b in the red end / AW; A converse	ner than
			7 comparative figures for light absorption to illustrate points 5 or 6;	[3 max]
			ignore units	
		(ii)	1 absorbed light used for photosynthesis;	
			2 higher rate of photosynthesis in red and blue light;	
			3 action peak(s) / high rate of photosynthesis, correspond to absorption peak(s	3);
			4 blue / shorter wavelength, light has more energy / ora;	
			5 not an exact match between absorption and action spectra (in middle region));
			6 role of carotenoids / accessory pigments, (in middle region);	[3 max]
		(iii)	they contain chlorophyll;	
			green / blue green / yellow green, light reflected;	[2]
	(b)		label line to stroma;label line to, granum / intergranal membranes;	[2]
(c)	1	ligh	ht not limiting;	
(-)	2		uch, ATP / reduced NADP, available ;	
	3		O ₂ is the limiting factor;	
	4		ecause low concentration CO ₂ (in atmosphere) ;	
	5		ore CO ₂ combines with RuBP;	
	6	-	f. rubisco ;	
	7		alvin cycle / light independent stage ;	
			P to TP;	
	8			
	9	100	ore hexose produced;	
	10	ref	f. fate of hexose;	[5 max]
				[Total:15]

Q6.

8	(a)	М-	- palisade ;		
		N-	- vascular bundle / phloem and xylem / vein ;		[2]
	(b)	1	ref. ABA absence;		
		2	H* transported out of guard cells, actively / using ATP;		
		3	low H* conc / negative charge, inside cell;		
		4	K* channels open / K* diffuses into cell ;		
		5	water potential of cell falls; A decrease in solute potential		
		6	water moves into cell by osmosis;		
		7	volume of guard cells increase / turgor increases;		
		8	guard cells: have hoops of cellulose microfibrils which ensure increase in lediameter;	ength rather th	han
		9	have ends that are joined together;		
		10	have, thicker inner walls / thinner outer walls;		
		11	curve apart / bend, (to open stoma);	[6 m	nax]
	(c)	(i)	cyclic photophosphorylation;		[1]
		(ii)	photolysis;		
			(water splits into) 2e ⁻ , 2H ⁺ and (½)O ₂ ;		
			enzyme is involved;	[2 m	nax]
(iii)	AT	<u>P</u> ;		1	[1]
(iv)	hyc	lroge	en carrier;		
	GP	, rec	duced / hydrogen added; R H ₂		
	to,	TP/	/ 3 carbon sugar;		
	use	s A	TP;	[2 ma	ix]
				[Total: 1	4]

Q7.

4	(a)	(i)	K-	epidermis/epidermal cell; mesophyll (cell); bundle sheath (cell);	[3]
		(ii)	1	mesophyll cells tightly packed/AW;	
			2	so O2 cannot reach bundle sheath cells;	
			3	light independent stage/Calvin cycle or RuBP, in bundle sheath cells;	
			4	ref. malate shunt;	
			5	maintains high CO_2 concentration (in bundle sheath cells);	
			6	PEP carboxylase, has high optimum temperature/has higher affinity for C accept O_2 ;	O ₂ /doesn't
			7	(PEP carboxylase) not denatured;	
			8	photorespiration is avoided;	[4 max]
	(b)	1	red	uces water loss/AW;	
		2	wax	x does not melt;	
		3	shir	ny surface reflects radiation;	[2 max]
(c)	(i)	use	of o	reduction in sorghum than in soybean; comparative figures; e.g. sorghum 5.5 to 1.2 or by 4.3 soybean 5.2 to 1.6 or by 3.6	[2]
	(11)			no' for all points	
		1		s surface area;	
		2		s absorption of light;	
		3		s, photophosphorylation / light dependent reaction;	
		4		s chemiosmosis;	
		5	-	e to) smaller thylakoid space or reduced proton gradient;	
		6		s ATP (produced);	
		7		s reduced NADP (produced);	
		8	-	nt-independent reaction / Calvin cycle, slows down;	
		9	les	s carbon dioxide, fixed / combined with PEP; R uptake	[4 max]
				ι	Total: 15]

Q8.

- 8 (a) (i) 1. 26 °C optimum temperature for, rubisco / enzyme of Calvin cycle;
 - 2. (at just over 40 °C) enzymes / rubisco, denatured;
 - 3. so less carbon dioxide fixed;
 - reduction in Calvin cycle / AW;
 - increased rate of transpiration / AW;
 - 6. so stomata close;
 - 7. less carbon dioxide uptake;
 - 8. oxygen more likely to combine with rubisco;
 - 9. so increased photorespiration;

[5 max]

- (ii) curve of C4 drawn with optimum to the right of existing curve; 1 mark
 - 1. C4 / sorghum, enzymes, have higher optimum temperature (than C3);
 - has leaf structural features to avoid photorespiration;
 - 3. adapted to hot climate;

2 max

[3 max]

(b) (i)

light intensity /lux	total CO ₂ uptake / µmol	rate of photosynthesis /µmol s ⁻¹
5	36	1.8
10	84	4.2
13	104	5.2
15	120	6.0

all 3 correct = 1 mark [1]

(ii) axes correct;

units;

correct plotting; suitable curve; between 5 and 15 lux

accept ecf from table

[3 max]

(II	11)	wher	n a process is affected by more than one factor / AW;	
		the ra	ate of photosynthesis is, restricted by / AW, the factor that is nearest its lowest	[2]
(i)	v)	light	intensity;	[1]
			[Tota	l: 15]
Q9.				
8	(a)	(gu	ard cell) thicker inner / unevenly thickened, cell wall; ora	
		ref.	to differences in, size / shape ;	[1 max]
	(b)) (i)	(receptors) on <u>plasma</u> / <u>cell surface</u> , membrane (of guard cells);	[1]
		(ii)	K* / potassium ;	[1]
		(iii)	(guard cell has) higher water potential than epidermal cell; ora	[1]
		(iv)	decrease;	[1]
	(c)	(i)	provides carbon dioxide;	[1]
		(ii)	0.1; % per minute; reject plural	[2]
		(iii)	$0-10$ mins / initially, rate for ${f B}$ is faster than rate for ${f A}$;	
			$10-20\ \text{mins}$ / AW, rate decreases for \boldsymbol{B} and not for \boldsymbol{A} / rate decreases more for \boldsymbol{I}	В;
			paired figs; A & B % at same time (minutes)	[2 max]
		(iv)	no, photosynthesis / light dependent reaction;	
			oxygen used up in respiration;	[2]
		(v)	temperature;	[1]
	(d		uced NADP;	
		ATE	P;	[2]
			П	otal: 15]

Q10.

1	(a)	A – palisade, mesophyll/cell/tissue/layer;
		B - guard cell;
		C – (sub-stomatal) air space; [3]
	(b) (i)	1. through the stoma(ta);
		2. by diffusion/description;
		3. from the, atmosphere/air; [max 2]
	(ii)	ribulose bisphosphate; I RuBP [1]
	(iii)	reduces/donates hydrogen; [2] A H/hydrogen atoms/H ⁺ AND e ⁻ R H ⁺ / H ₂
		GP to TP; A PGA to PGAL
		[Total: 8]
Q11.		
1	(a) (i)	 in high light intensity 1. (as temperature increased) the volume of oxygen released / rate of photosynthesis, increased to a peak and then fell;
		 in low light intensity 2. (as temperature increased) the volume of oxygen released / rate of photosynthesis, remained constant and then fell;
		3. supporting figures (two oxygen values at two different temperatures plus units); [3]
	(ii)	 light no longer limiting / temperature now limiting;
		enzymes denatured / described;
		so fewer enzyme-substrate complexes / AW;
		so less photolysis (leads to less oxygen produced); [2 max]
	(b) (i)	photolysis; [1]
	(ii)	P680; A (photosystem) II [1]
	(iii)	respiration uses oxygen; [1]
		[Total: 8]

Q12.

Question 1			9.6	
(a)		4; 4.	0	
(i)				
increase;	0.0			
rapid/sharp/steep;		28		
then decrease;				
does not drop to original value;				2 max
(ii)			27	
decreases to 0 / all used up ;				
		•		1
		26		
(b)				20
(1)				
GP continues to be formed from RuBP; (until) all RuBP used up;				
the GP falls as converted to hexose/glucose/TP;				2 max
(51)				
in dark RuBP not regenerated/converted to GP; requires the products /ATP/reduced NADP from the light	R used ght reaction	The state of the same of the same	osphorylation;	2
(c)				
ATP;				
reduced NADP;				2
		id to	Total :	9

Q13.

	ignore reference to sun / shade leaves	3 max
	stage; detail - e.g. named enzyme (RuBISCO) / ref. Calvin Cycle;	
	ref. (effect of temperature on the rate of) enzyme controlled reactions	/ light independent
	at high light intensity increasing temperature will increase the rate of p	photosynthesis;
(c)	at low light intensity little or no effect / light (dependent reaction) limit	ing rate :
	example carbon dioxide concentration / temperature / ref:chlorophyll;	3
	some other factor limiting;	
(b)	light no longer limiting;	
	accept CO ₂ production for respiration and vice versa	
	accept CO2 uptake for photosynthesis and vice versa	
	6 CO ₂ uptake levels off in shade leaves (ora);	3 max
	5 more respiration in sun leaves (ora) at zero or low light intensity	
	 CO₂ uptake is greater in shade leaves (ora) at low light intensity higher rate of photosynthesis / CO₂ uptake in sun leaves (ora) a 	
	2 rate of photosynthesis increases more rapidly in sun leaves ;	
a)	1 sun leaves reach compensation point / zero gas exchange at his	gher light intensity;

Q14.

1	(a) 1	chlorophyll absorbs mainly red and blue light;	
	2	light absorbed by antenna complex;	
	3	energy transferred;	
	4	reaction centres/P700/P680;	
	5	light energy excites electron(s)/reference passing to higher energy le	evel;
	6	electron lost from chlorophyll	3 max
	(b) 1	water is split into H* and OH;	
	2	electron removed from OH*;	
	3	to replace electron from photosystem/chlorophyll;	
	4	OH breaks down into O ₂ and water;	
	5	H ⁺ used to form reduced NADP;	
	6	reference correct, balanced equation;	3 max
	(c) 1	reference flow of electrons along ETC;	
	2	reference to pumping H* across membrane;	
	3	reference to H*/proton gradient across the thylakoid membrane;	
	4	flow of protons down gradient;	
	5	via ATPase/stalked particles;	
	6	formation of ATP from ADP and Pi;	
	7	cyclic, electron returns to original photosystem;	
	8	non-cyclic, electron from PSII to PSI;	3 max
	(d) re	ference increased efficiency/short diffusion distance/close together;	.1

Total 10

Q15.

9	(a)	(i)	<u>ribulose</u> ;		[1]
		(ii)	ribulose bisphosphate o	arboxylase / rubisco;	[1]
		(iii)	stroma; R	stoma	[1]
		(iv)	ATP / reduced NADP;	R reduced NAD	[1]
	(b)	1	light independent reacti	on / Calvin cycle, continues;	
		2	RuBP (still) converted to	GP;	
		3	until used up;	link to 2	
		4	light dependent reaction	stops;	
		5	no, ATP / reduced NAD	P, produced;	
		6	RuBP not regenerated;		
		7	GP, coverted to TP / us	ed to make hexose;	[4 max]
					[Total: 8]

Q16.

				31
8	(a)	(i)	at low light intensity 1. rate of photosynthesis increases as light intensity increases; 2. light intensity is limiting factor;	
			2. light <u>interisity</u> is limiting factor,	
			at higher light intensity 3. graph, levels off / forms a plateau / rate becomes constant;	
			4. CO ₂ / some other factor, becomes limiting ;	[3 max]
		(ii)	1. above light intensity of 1 rate is always higher for expt. 2;	-
			2. plateau reached at lower light intensity for expt. 1;	
			3. maximum / plateau, rate is double for expt. 2;	
			4. expt 2 has much more CO ₂ (conc) (compared to expt 1);	
			5. CO ₂ , no longer limiting after 4.2 in expt.2 / is limiting in expt. 1 up to 2.8;	[3 max]
	(b)	1	enzymes, denatured / active site changes shape ;	
		2	rubisco / enzyme in cyclic photophosphorylation ;	
		3	Calvin cycle affected / description ;	
		4	less photolysis ;	
		5	less ATP produced ;	
		6	increased rate of respiration;	
		7	respiration rate faster than photosynthesis rate / ref. compensation point;	
		8	increased rate of transpiration;	
		9	stomatal closure;	
		10	less CO₂ uptake ;	[5 max]
				[Total:11]

Q17.

			I	[.0
8	(a)	1	stomata;	
		2	air spaces (between cells);	
		3	thin cell walls;	
		4	moist internal walls;	
		5	thin leaf;	
		6	cylindrical palisade cells;	
		7	large surface area of, palisade / mesophyll, cells ;	[4 max]
	(b)		0.0025 / 2.5 x 10 ⁻³ ; A 0.003 only if 0.0025 in answer	[1]
	©	1	photosynthesis takes place ;	*
		2	oxygen is produced;	
		3	collects, inside disc / on surface of disc ;	
		4	disc, less dense / more buoyant ;	[3 max]
	(d)		rate of photosynthesis increases as light intensity increases;	
			paired data quotes from columns 2 and 4;	[2]
	(e)	1	light intensity no longer limiting;	
		2	carbon dioxide, concentration / rate of diffusion, now limiting;	
		3	temperature, too high / denatures enzymes;	[2 max]
				[Total: 12]

Q18.

3	(a)	1	absorb light; A harvest light / trap light R collect light	
		2	pass energy to, primary pigment / chlorophyll / reaction centre;	[2 max]
(b)		1	cyclic photophosphorylation electron emitted returns to, PSI / same photosystem or same chlorophyll molecule ;	
		2	non-cyclic photophosphorylation electron emitted from PSII absorbed by PSI;	
		3	reduced NADP produced;	
		4	photolysis occurs; A splitting of water	
		5	(photolysis) only involves PSII;	
		6	oxygen produced 3 max	
			accept ora for cyclic for marking points 3, 4 and 6	
			mark to max 3 if cyclic and non-cyclic are described the wrong way round	[4 max]
	(c)	(i)	some other factor becomes limiting / temperature no longer limiting;	
			CO ₂ / light intensity;	[2]
		(ii)	line falls towards 70°C;	[1]
		(iii)	rate of photosynthesis falls enzyme / rubisco, denatured / AW;	
			substrates not able to fit active site / AW;	[2]

d)	adaptation	how the adaptation helps photosynthesis				
	thin cell wall	greater light penetration / short diffusion distance (for gases);				
	cylindrical shape	air spaces ;				
	large vacuole	chloroplasts near outside of cell for better light absorption / maintains turgor;				
	chloroplasts can be moved within the cell	absorb maximum light / avoid excessive light intensities;				

[4]

[Total: 15]

Q19.

8	(a)	1	high $\underline{\text{rate}}$ of photosynthesis at $\underline{\text{430-435}}\underline{\text{nm}}$ and $\underline{\text{655}}\underline{\text{nm}}$ wavelengths ;	
		2	idea of (high) absorption of light at these wavelengths;	
		3	highest rate, at 430-435 nm;	
		4	shorter wavelengths have more energy;	
		5	low(er rate) in, middle range / 500-600, of wavelengths;	
		6	low light absorption here;	
		7		
		8	in light-dependent stage ;	[4 max]
	(b)	(i)	ATP;	
	* 1	.,	reduced NADP;	[2]
		(ii)	1 ATP provides energy;	
			2 reduced NADP, is reducing agent / provides hydrogen;	
			3 for converting GP to TP;	
			4 (ATP used to) regenerate RuBP;	[3 max]
	(c)	proc	ess / photosynthesis, affected by more than one factor;	
		rate	is limited by the factor nearest its minimum value / AW;	[2]
(d)	1	en	iters leaf through (open) stomata;	
	2	by	diffusion;	
	3	SU	ibstomatal air space;	
	4	m	any air spaces in spongy mesophyll;	
	5	sp	paces between palisade cells;	
	6	dis	ssolves in moisture on cell (walls);	
	7	en	iters through cell walls ;	[4 max]
				[Total: 15]

Q20.

7	(a)	(i)	 (blue) light is absorbed and used for photosynthesis; 	
			2. CO ₂ , used / concentration decreased ;	
			3. leads to, rise in pH / decrease in acidity;	[max 2]
		(ii)	1. respiration but no photosynthesis;	
			2. CO ₂ , produced / released;	
			3. leads to, decrease in pH / increase in acidity;	[max 2]
	(b)	(i)	absorb light (energy);	
			pass (light) energy onto, primary pigment / chlorophyll a / reaction centre;	[2]
		(ii)	H ₂ O	
			A 2H ₂ O	[1]
		(iii)	grana / thylakoid, membrane;	[1]
				[Total: 8]
Q21.				
QZ I.				
7	(a)	A -	photosystem II / P680 / PS II ;	
		В-	photosystem I / P700 / PS I; if photosystem given for both but wrong way round give one mark	[2]
	(b)	(i)	1. carbon dioxide fixation ;	
			2. production of GP;	
			3. ref. to rubisco;	[max 2]
		(ii)	1. reduction (of GP) / donates hydrogen ;	
			2. GP to TP;	[2]
		(iii)	1. supplies, energy / phosphate;	
			2. (to convert) GP to TP;	
			3. (to) regenerate of RuBP ;	[max 2]
				[Total: 8]

Q22.

1 (a) (i) stroma; [1]

(ii) lower CO2 concentration;

less, carbon fixation/CO2 combining with RuBP/RuBP converted to GP;

RuBP reformed from TP;

[max 2]

(iii) 0.01;;

A 0.012 or 1.8 ÷ 150 or
$$\frac{2.0-0.2}{150}$$
 or $\frac{2.0-0.2}{350-200}$ for 1 mark [2]

(b) less TP;

(so less) conversion to, (other) carbohydrates/lipids/amino acids/proteins; A named examples, e.g. glucose/hexose/cellulose/starch

AVP; e.g. 1 – (amino acids) used to make proteins for, growth/cell division
e.g. 2 – (carbohydrate/lipid) for respiration for, growth/cell division [max 2]

[Total: 7]

Q23.

1 (a) transport proteins - Y;

pigments – X; [2]

(b) DNA

codes for, proteins/polypeptides/enzymes;

one example of protein or enzyme;

e.g. rubisco/electron acceptor/ATP synthase/transport

ref. transcription/ mRNA;

[max 2]

(c)

factor	stage	√or×
carbon dioxide	Calvin cycle	V
concentration	photolysis	×
	Calvin cycle	×
light intensity	photolysis	1
i i	Calvin cycle	V
temperature	photolysis	×

all 6 correct = 3 marks 4 or 5 correct = 2 marks 2 or 3 correct = 1 mark

[3]

[Total:7]

Q24.

3 (a) (i)	A-	- RuBP/ribulose bisphosphate;	
			- fatty acid ;	
			C – nitrates; A suitable nitrogenous substance e.g. ammonium ions I nitrogen/ammonia	
	(ii)	noi	non-cyclic photophosphorylation;	
	(iii) condensation/polymerisation; A anabolic			
		glycosidic;		[2]
	(iv)	1	enters via stoma(ta);	
		2	by diffusion/down a concentration gradient;	
		3	passes through air spaces;	
		4	dissolves in film of water (on cell surface);	
		5	(diffuses) through cell, wall/surface membrane (of palisade cells);	[max 3]
(b) 1	exc	cited electrons leave, chlorophyll a/photosystem;	
	2	pas	ss along ETC;	
	3	pro	otons present from photolysis;	
4 protons (pumped) into intermembrane space;		pro	otons (pumped) into intermembrane space;	
	5	rubisco is in stroma;		
	6	ide	a that protons leaving stroma raises pH;	[max 3]
				[Total: 12]

Q25.

8	(a)	X pointing to chloroplast;						
		Υp	ing to cell wall;					
		Z p	Z pointing to any membrane;					
	(b)	(i)	(i) rate on y-axis and light intensity on x-axis;all points plotted accurately;					
			line of best fit;					
	(ii) 1 at low light intensity light is the limiting factor;							
	2 at high light intensity other factors become limiting;							
			3	such as, temperature/carbon dioxide concentration;	[3]			
	(c) (i) chlorophyll b and carotenoids;							
		(ii)	1	absorb light (energy);				
			2	at $\underline{wavelengths}$ not readily absorbed by, chlorophyll a/primary pigment ;				
		3 pass energy to, chlorophyll a/primary pigment;						
		4 in reaction centre;						
		(iii) reflected; (iv) action spectrum;						
		Г						