

Q1.

	3 (a)	f_0 is at natural frequency of spring (system) this is at the driver frequency		[2]
	(b)	line: amplitude less at all frequencies	B1	[3]
	(c)	(aluminium) sheet cuts the magnetic flux/field	B1 M1 A1	[4]
Q2.)	
4	(a)		e.g. amplitude is not constant or wave is damped	B1	
			do not allow 'displacement constant' should be (-)cos, (not sin)	B1	[2]
	(b)		T = 0.60 s $\omega = 2\pi/T = 10.5 \text{ rad s}^{-1} \text{ (allow } 10.4 \rightarrow 10.6)$	C1 A1	[2]
	(c)		same period displacement always less amplitude reducing appropriately	B1 M1 A1	[3]
Q3.			for 2 nd and 3 rd marks, ignore the first quarter period	Total	[7]
4	(a)		acceleration proportional to displacement (from a fixed point)	M1	
			<u>or</u> $a = -\omega^2 x$ with a , ω and x explained and directed towards a fixed point <u>or</u> negative sign explained	A1	[2]
	(b)		for s.h.m., $a=(-)\omega^2x$ identifies ω^2 as $A\rho g/M$ and therefore s.h.m. (may be implied) $2\pi f=\omega$	B1 B1 B1	
			hence $f = \frac{1}{2\pi} \sqrt{\frac{Apg}{M}}$	A0	[3]
	(c)	(i)	$T = 0.60 \text{ s } \underline{\text{or}} \ f = 1.7 \text{ Hz}$ $0.60 = (2\pi\sqrt{M})/\sqrt{(\pi \times \{1.2 \times 10^{-2}\}^2 \times 950 \times 9.81)}$ M = 0.0384 kg	C1 C1 A1	[3]
		(ii)	decreasing peak height/amplitude	B1	[1]

Q4.

4	(a)	(i)	1.0	B1	[1]
		(ii)	40 Hz	B1	[1]
	(b)	(i)	speed = $2\pi fa$ = $2\pi \times 40 \times 42 \times 10^{-3}$	C1	
			$= 2\pi \times 40 \times 42 \times 10^{\circ}$ = 10.6 m s ⁻¹	A1	[2]
		(ii)	acceleration = $4\pi^2 f^2 a$ = $(80\pi)^2 \times 42 \times 10^{-3}$	C1	
			= $(80\pi)^2 \times 42 \times 10^{-3}$ = 2650 m s ⁻²	A1	[2]
	(c)	(i)	S marked correctly (on 'horizontal line through centre of wheel)	B1	
		(ii)	A marked correctly (on 'vertical line' through centre of wheel)	B1	[2]

Q5.

7	(a)	(i)	oscillations are damped/amplitude decreases as magnet moves, flux is cut by coil e.m.f./current is induced in the coil causing energy loss in load OR force on magnet	B1 B1 B1 B1	
			energy is derived from oscillations of magnet OR force opposes motion of magnet	B1	[5]
		(ii)	T = 0.60 s $\omega_0 \ (= 2\pi/T) = 10.5 \text{ rad s}^{-1}$	C1 A1	[2]
	(b)		etch: sinusoidal wave with period unchanged or slightly smaller ne initial displacement, less damping	M1 A1	[2]
	(c)	(i)	sketch: general shape – peaked curve peak at ω_0 and amplitude never zero	M1 A1	[2]
		(ii)	resonance	B1	[1]
		(iii)	useful: e.g. child on swing, microwave oven heating avoid: e.g. vibrating panels, vibrating bridges (for credit, stated example must be put in context)	B1 B1	[2]

Q6.

3	(a)	(i)	amplitude = 0.5 cm	A1	[1]
		(ii)	period = 0.8 s	A1	[1]
	(b)	(i)	$\omega = 2\pi / T$ = 7.85 rad s ⁻¹ correct use of $v = \omega \sqrt{(x_0^2 - x^2)}$	C1 B1	
			= $7.85 \times \sqrt{(\{0.5 \times 10^{-2}\}^2 - \{0.2 \times 10^{-2}\}^2)}$ = 3.6 cm s^{-1} (if tangent drawn or clearly implied (B1) $3.6 \pm 0.3 \text{ cm s}^{-1}$ (A2) but allow 1 mark for > $\pm 0.3 \text{ but} \le \pm 0.6 \text{ cm s}^{-1}$)	A1	[3]
		(ii)	d = 15.8 cm	A1	[1]
	(c)	(i)	amplitude (from the oscillating system) caused by force acting in opposite direction to the motion / friction /	B1	
		(ii)	same period / small increase in period line displacement always less than that on Fig.3.2 (ignore first 7/4) peak progressively smaller	B1 B1 M1 A1	[2]
Q7.			X		
3	(a)	(i)	to-and-fro / backward and forward motion (between two limits)	B1	[1]
		(ii)	no energy loss or gain / no external force acting / constant energy / constant and	nplitud B1	le [1]
		(iii)	acceleration directed towards a fixed point acceleration proportional to distance from the fixed point / displacement	B1 B1	[2]
	(b)		celeration is constant (magnitude) cannot be s.h.m.	M1 A1	[2]
∩o					

2	(a) (reduction i	n energy (of the oscillations) n amplitude / energy of oscillations e (always) opposing motion / resistive forces the above, max 2	(B1) (B1) (B1)	[2]
	(ii		is decreasing (very) gradually / oscillations would or a long time) /many oscillations ing	M1 A1	[2]
	(b) (frequency allow point	= $1/0.3$ = 3.3 Hz s taken from time axis giving $f = 3.45 \text{ Hz}$	A1	[1]
	(ii) energy	= $\frac{1}{2} mv^2$ and $v = \omega a$ = $\frac{1}{2} \times 0.065 \times (2\pi/0.3)^2 \times (1.5 \times 10^{-2})^2$ = 3.2 mJ	C1 M1 A0	[2]
		mplitude redu o will be not b	ces exponentially / does not decrease linearly e 0.7 cm	M1 A1	[2]
Q9.					
3	ac		rce proportional to displacement from a fixed point rce (always) directed towards that fixed point / in opposite lacement	M1 A1	[2]
	(b) (i)	negative sig	a constant and so acceleration proportional to <i>x</i> gn shows acceleration towards a fixed point / in opposite displacement	B1 B1	[2]
	(iii	$\omega^{2} = (A\rho g / \omega)$ $\omega = 2\pi f$ $(2 \times \pi \times 1.5)$ $m = 50 g$	(m) $(2)^2 = ({4.5 \times 10^{-4} \times 1.0 \times 10^3 \times 9.81} / m)$	C1 C1 C1 A1	[4]

Q10.

4 (a)
$$a = (-)\omega^2 x$$
 and $\omega = 2\pi/T$ C1
 $T = 0.60 s$ C1
 $a = (4\pi^2 \times 2.0 \times 10^{-2}) / (0.6)^2$ A1 [3]
(b) sinusoidal wave with all values positive all values positive, all peaks at E_K and energy = 0 at $t = 0$ B1 period = 0.30 s

Q11.

2 (a) energy = $\frac{1}{2}m\omega^2a^2$ and $\omega = 2\pi f$ = $\frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ = $7.0 \times 10^{-3} \text{ J}$ (allow $2\pi \times 3.5$ shown as 7π)	C1 M1 A0	[2]
Energy = $\frac{1}{2} mv^2$ and $v = r\omega$ Correct substitution Energy = 7.0×10^{-3} J	(C1) (M1) (A0)	
(b) $E_{\rm K} = E_{\rm P}$ $\frac{1}{2}m\omega^2(a^2 - x^2) = \frac{1}{2}m\omega^2x^2$ or $E_{\rm K}$ or $E_{\rm P} = 3.5{\rm mJ}$ $x = a/\sqrt{2} = 2.8/\sqrt{2}$ or $E_{\rm K} = \frac{1}{2}m\omega^2(a^2 - x^2)$ or $E_{\rm P} = \frac{1}{2}m\omega^2x^2$ $= 2.0{\rm cm}$ $(E_{\rm K}$ or $E_{\rm P} = 7.0{\rm mJ}$ scores 0/3)	C1 C1 A1	[3]
Allow: $k = 17.9$ $E = \frac{1}{2}kx^2$ x = 2.0 cm	(C1) (C1) (A1)	
(c) (i) graph: horizontal line, y-intercept = 7.0 mJ with end-points of line at +2.8 cm and -2.8 cm	B1	[1]
(ii) graph: reasonable curve with maximum at (0,7.0) end-points of line at (-2.8, 0) and (+2.8, 0)	B1 B1	[2]
(iii) graph: inverted version of (ii) with intersections at (-2.0, 3.5) and (42.0, 3.5) (Allow marks in (iii), but not in (ii), if graphs K & P are not labelled)	M1 A1	[2]
(d) gravitational potential energy	B1	[1]

Q12.

Page 5 of 16

3	(a)	(i)	1.	amplitude = 1.7 cm	A1	[1]
			2.	period = 0.36 cm frequency = 1/0.36	C1	
				= 2.8Hz	A1	[2]
		(ii)		$(-)\omega^2 x$ and $\omega = 2\pi/T$ celeration = $(2\pi/0.36)^2 \times 1.7 \times 10^{-2}$	C1 M1	
			acc	$= 5.2 \mathrm{ms}^{-2}$	A0	[2]
	(b)	ara	nh·	straight line, through origin, with negative gradient	M1	
	(15)			from $(-1.7 \times 10^{-2}, 5.2)$ to $(1.7 \times 10^{-2}, -5.2)$	A1	[2]
		(if s	scale	e not reasonable, do not allow second mark)		
	(c)	eith	ner	kinetic energy = $\frac{1}{2}m\omega^2(x_0^2 - x^2)$		
		or ½n	$1\omega^2$	potential energy = $\frac{1}{2}m\omega^2x^2$ and potential energy = kinetic energy $(x_0 - x^2) = \frac{1}{2} \times \frac{1}{2}m\omega^2x_0^2$ or $\frac{1}{2}m\omega^2x^2 = \frac{1}{2} \times \frac{1}{2}m\omega^2x_0^2$	B1 C1	
		x_0^2	= 2x	$\sqrt{2} = 1.7 / \sqrt{2}$		
			1.2		A1	[3]
Q13.						
3	(a) (i)		= 2π / T		
				$= 2\pi / 0.69$ = 9.1 rad s ⁻¹	C1 A1	[2]
				How use of $f = 1.5$ Hz to give $\omega = 9.4$ rad s ⁻¹)	Al	ر4 ا
		(ii)	1.	$x = 2.1 \cos 9.1t$ 2.1 and 9.1 numerical values	B1	
				2.1 and 9.1 numerical values	B1	[2]

use of cos B1 [2] 2. $v_0 = 2.1 \times 10^{-2} \times 9.1$ (allow ecf of value of x_0 from (ii)1.)

2. $v_0 = 2.1 \times 10^{-2} \times 9.1$ (allow ecf of value of x_0 from (ii)1.) = 0.19 m s⁻¹ B1 $v = v_0 \sin 9.1t$ (allow $\cos 9.1t$ if $\sin used in (ii)1$.)

(b) energy = either
$$\frac{1}{2} m v_0^2$$
 or $\frac{1}{2} m \omega^2 x_0^2$
= either $\frac{1}{2} \times 0.078 \times 0.19^2$ or $\frac{1}{2} \times 0.078 \times 9.1^2 \times (2.1 \times 10^{-2})^2$ C1
= 1.4×10^{-3} J A1 [2]

Q14.

3 (a)	100	constant amplitude B1	
	(ii)	period = 0.75 s (allow $\pm 0.2 \text{ s}$)	
		$\omega = 2\pi/T$	
		$\omega = 8.4 \text{ rad s}^{-1} \dots (-1 \text{ for } 1 \text{ sf}) \dots$ A1	
	(iii)	either use of gradient or $v = \omega y_0$	1000
		$v = 0.168 \mathrm{m s^{-1}}$]
		(allow ±0.02 for construction: gradient drawn at wrong place 0/2)	
(b)	(i)	1.3 Hz B1	
3.50	(ii)	at ½f ₀ , 'pulse' provided to mass on alternate/some oscillations M1	
		so 'pulses' build up the amplitude	1
		**************************************	7
Q15.			
2	(a)	(i) a, ω and x identified(-1 each error or omission)	
		(ii) (-)ve because a and x in opposite directions	
		OR a directed towards mean position/centre	3]
	(b)	(i) forces in springs are $k(e + x)$ and $k(e - x)$	
	(2)	resultant = $k(e + x) - k(e - x)$	
		resultant = $k(e + x) - k(e - x)$	2]
		(ii) F= ma	
		(ii) $F = ma$	
			2]
			•
		(iii) $\omega^2 = 2k/m$	
		$(2\pi t)^2 = (2 \times 120)/0.90$	3]
		7 = 2.0 HZA1 [ι	ر
	(c)	atom held in position by attractive forces	
		atom oscillates,	
		not just two forces OR 3D not 1D	
		force not proportional to x any two relevant points, 1 each, max 2	2]
		arry two rolevant points, i each, max 2	-1
047			
Q16.			

3	(a)	(i)	reasonable shape as 'inverse' of k.e. line	1	
		(ii)	straight line, parallel to x-axis at 15 mJ	1	[2]
	(b)	eithe	er (max) kinetic energy (= $\frac{1}{2}$ mv ²) = $\frac{1}{2}$ m ω ² a_0 ² 15 x 10 ⁻³ = $\frac{1}{2}$ x 0.15 x ω ² x (5.0 x 10 ⁻²) ² ω = 8.9(4) rad s ⁻¹	1 1 1	
		or	(k.e. = $\frac{1}{2}$ mv ²), v = 0.44(7) m s ⁻¹ ω = v/a = (0.447)/(5.0 x 10 ⁻²) ω = 8.9(4) rad s ⁻¹	1 1 1	[3]
	(c)	(i)	either loss of energy (from the system) or amplitude decreases or additional force acting (on the mass) either continuous/gradual loss or force always opposing motion	1	[2]
		(ii)	either (now has 80% of its) p.e./k.e. = 12 mJ or loss in k.e. = 3 mJ new amplitude = 4.5 cm (allow ± 0.1 cm)	1	[2]
Q17.	•				
4	(a)(i)	ω = 2	2πf		
			$2\pi \times 1400$ 8800 rad s ⁻¹		[2]
	(ii)		$(-)\omega^2 x_0$ C1 $(8800)^2 \times 0.080 \times 10^{-3}$		
		= 6	6200 m s ⁻²		[2]
	(b)		t line through origin with negative gradient		[2]
	(c)(i)	zero di	splacement B1		[1]
	(ii)	v =	ωx_0 C1 8800 × 0.080 × 10 ⁻³		
		=	0.70 m s ⁻¹		[2]
Q18.	•				
3 (a)	eith ω f =	$er \omega = 0$ $= 2 \pi f$	$\omega^2 x$ clear $l(2k/m)$ or $\omega^2 = (2k/m)$ (2 x 300)/0.240)	C1 B1 C1 B1 A0	[4]
(b)) (i)	reson	ance	B1	[1]
	(ii)	8 Hz		B1	[1]
(c)	with		nount of) damping ing (k or) m(some indirect reference is acceptable) gestion	B1 B1 B1	[3]

Q19.

3	(a)	(i)	0.8 cm	.B1	[1]
		(ii)	(max.) kinetic energy = 2.56 mJ	.C1 .C1 .M1 .C1	[6]
	(b)	(i)	line parallel to x-axis at 2.56 mJ	.B1	[1]
		(ii)	1 4.0 Hz	.B1	
			2 0.50 cm (allow ±0.03 cm)	.B1	[2]
Q20.		ac		M1	
		all		A1	[2]
	(b)	(i)	maximum / minimum height / 8 mm above cloth / 14 mm below cloth	B1	[1]
		(ii)	×	A1 C1	[1]
				A1	[2]
			© UCZES 2008		

Page 3	Mark Scheme Syllabus		Paper	
	GCE A/AS LEVEL - October/November 2008	9702	04	
(c) (i) v	= ωa = $28.3 \times 11 \times 10^{-3}$ = 0.31 m s^{-1} (do not allow 1 s.f.)		C1 A1	[2]
	= $\omega \sqrt{(a^2 - y^2)}$ = 3 mm = 28.3 × 10 ⁻³ $\sqrt{(11^2 - 3^2)}$ = 0.30 m s ⁻¹ (allow 1 s.f.)		C1 C1 A1	[3]

Q21.

4	(a)	(i)	amplitude = 0.2 mm	. A1	[1]
		(ii)	period = 1.2 ms		[2]
	(b)	(i)	any two of zero, 0.6 ms and 1.2 ms	.A1	[1]
		(ii)	any two of 0.3 ms, 0.9 ms, 1.5 ms	. A1	[1]
	(c)	eith	ther $v = \omega x_0 = 2\pi f x_0$ = $2\pi \times 830 \times 0.2 \times 10^{-3} = 1.05 \text{ m s}^{-1}$		
		or E _K	slope of graph = 1.0 m s ⁻¹ (allow ± 0.1 m s ⁻¹) = $\frac{1}{2}mv^2$		
			= $\frac{1}{2} \times 2.5 \times 10^{-3} \times 1.05^{2}$ = 1.4×10^{-3} J		[3]
	(d)	(i)	large / maximum amplitude of vibration		[2]
		(ii)	e.g. metal panels on machinery vibrate / oscillate	(A1) M1) (A1)	[2] 12]
Q22.					
3	(a)	strai neg	ight line through originative gradient	B1	[2]
	(b)	750	$-\omega^2 x$ and $\omega = 2\pi f$ = $(2\pi f)^2 \times 0.3 \times 10^{-3}$ 250 Hz	C1	[3]
	(c)	(allo	ight line between(-0.3,+190) and (+0.3,-190)		[2]
				[Tot	al: 71

Q23.

B1

A₁

[2]

[1]

(ii)	amplitude 16 mm and frequency 4.6 Hz	A1	[1]
(b) (i)	$a = (-)\omega^2 x$ and $\omega = 2\pi f$ $a = 4\pi^2 \times 4.6^2 \times 16 \times 10^{-3}$	C1 C1	

$$a = 4\pi^{2} \times 4.6^{2} \times 16 \times 10^{-3}$$
 C1
= 13.4 ms⁻² A1 [3]
(ii) $F = ma$ C1
= 150 × 10⁻³ × 13.4

Q24.

3

(a) (i) resonance

= 2.0 N

(ii)
$$2\pi f = 220$$
 C1 A1 [2]

(iii)
$$v = \omega \sqrt{(a^2 - x^2)}$$

= $220 \times \sqrt{(4.0^2 - 2.0^2)}$
= 760 cm s^{-1}
(incorrect value for x, 0/2 marks)

Q25.

Q26.

•		nd in opposite directions/directed towards fixed point	A1	[2]
	(b) e	nergy = $\frac{1}{2}m\omega^2 x_0^2$ and $\omega = 2\pi f$ = $\frac{1}{2} \times 5.8 \times 10^{-3} \times (2\pi \times 4.5)^2 \times (3.0 \times 10^{-3})^2$ = 2.1×10^{-5} J	C1 C1 A1	[3]
	(c) (i) at maximum displacement above rest position	M1 A1	[2]
	(ii) acceleration = $(-)\omega^2 x_0$ and acceleration = 9.81 or g 9.81 = $(2\pi \times 4.5)^2 \times x_0$	C1	
		$x_0 = 1.2 \times 10^{-2} \mathrm{m}$	A1	[2]

Q27.

4	(a)	straight line through origin	M1	
		shows acceleration proportional to displacement	A1	
		negative gradient	M1	
		shows acceleration and displacement in opposite directions	A1	[4]

© Cambridge International Examinations 2012

Page 3	Mark Scheme	Syllabus	Paper	4
	GCE AS/A LEVEL – October/November 2012	9702	41	
(b) (i) 2	.8 cm		A1	[1]
(ii) e	ither gradient = ω^2 and $\omega = 2\pi f$ or $a = -\omega^2 x$ and $\omega = 2\pi f$ radient = 13.5/(2.8 × 10 ⁻²) = 482		C1	
a	= 22 rad s ⁻¹		C1	
fr	equency = (22/2π =) 3.5 Hz		A1	[3]
, ,	ower spring may not be extended pper spring may exceed limit of proportionality/elastic limit			
_	sensible suggestion)		B1	[1]

Q28.

2	(a)	(i)	1. 0.	1s, 0.3s, 0.5s, etc (<i>any two</i>)	A1	[1]
			2. ei	ther 0, 0.4 s, 0.8 s, 1.2 s		
			0.	2s, 0.6s, 1.0s (any two)	A1	[1]
		(ii)		I = 0.4 s ency = (1/0.4 =) 2.5 Hz	C1 A1	[2]
		(iii)	phase	difference = 90° or $\frac{1}{2}$ π rad	B1	[1]
	(b)	frec	quency	= 2.4 – 2.5 Hz	B1	[1]
	(c)	incr e.g.	eases reduc	a sheet of card to trolley damping / frictional force e oscillator amplitude ower/energy input to system	M1 A1 (M1) (A1)	[2]
Q29	٠.			<i>O</i> , *		
3	(a)	(i)	any tv	vo from 0.3(0) s, 0.9(0) s, 1.50 s (allow 2.1 s etc.)	B1	[1]
		(ii)	either or	$v = \omega x$ and $\omega = 2\pi/T$ $v = (2\pi/1.2) \times 1.5 \times 10^{-2}$ $= 0.079 \text{ ms}^{-1}$ gradient drawn clearly at a correct position working clear to give $(0.08 \pm 0.01) \text{ m s}^{-1}$	C1 M1 A0 (C1) (M1) (A0)	[2]

Cambridge International Examinations 2013

	Page 3	Mark Scheme	Syllabus	Pape	r
J		GCE A LEVEL – October/November 2013	9702	41	
	(b) (i) sket	ch: <u>curve</u> from (±1.5, 0) passing through (0, 25) reasonable shape (<i>curved with both intersection</i>	ons between	M1	
		$y = 12.0 \rightarrow 13.0$	710 - 710 - 710	A1	[2]
	7.17	ax. amplitude potential energy is total energy energy = 4.0 mJ		B1 B1	[2]

Q30.

(a) kinetic (energy)/KE/EK **B1** [1] (b) either change in energy = 0.60 mJ max E proportional to (amplitude)2/equivalent numerical working **B1** new amplitude is 1.3 cm **B1** change in amplitude = 0.2 cm **B1** [3] Q31. (a) acceleration/force proportional to displacement (from a fixed point) M1 either acceleration and displacement in opposite directions or acceleration always directed towards a fixed point A1 [2] **B1** (b) (i) g and r are constant so a is proportional to x negative sign shows a and x are in opposite directions [2] B1 (ii) $\omega^2 = g/r$ and $\omega = 2\pi/T$ C₁ $\omega^2 = 9.8/0.28$ = 35 C₁ $T = 2\pi/\sqrt{35} = 1.06$ s time interval $\tau = 0.53 \,\mathrm{s}$ A1 [3] (c) sketch: time period constant (or increases very slightly) M1 A1 drawn line always 'inside' given loops successive decrease in peak height A1 [3] Q32. (a) (i) either $\omega = 2\pi/T$ or $\omega = 2\pi f$ and f = 1/TC₁ $\omega = 2\pi/0.30$ = 20.9 rad s⁻¹ (accept 2 s.f.) A₁ [2] (ii) kinetic energy = $\frac{1}{2}m\omega^2 x_0^2$ or $v = \omega x_0$ and $\frac{1}{2}mv^2$ C₁ = $\frac{1}{2} \times 0.130 \times 20.9^2 \times (1.5 \times 10^{-2})^2 = 6.4 \times 10^{-3} \text{ J}$ A₁ [2] (b) (i) as magnet moves, flux is cut by <u>cup/aluminium</u> giving rise to induced e.m.f. **B**1 **B1** induced e.m.f. gives rise to currents and heating of the cup thermal energy derived from oscillations of magnet so amplitude decreases **B1** induced e.m.f. gives rise to currents which generate a magnetic field (B1) the magnetic field opposes the motion of the magnet so amplitude decreases (B1) [3] (ii) either use of $\frac{1}{2}m\omega^2x_0^2$ and $x_0 = 0.75$ cm or x_0 is halved so $\frac{1}{4}$ energy C₁ to give new energy = 1.6 mJ either loss in energy = 6.4 - 1.6 or loss = $\frac{3}{4} \times 6.4$ giving loss = 4.8 mJ A₁ [2] (c) $q = mc\Delta\theta$ $4.8 \times 10^{-3} = 6.2 \times 10^{-3} \times 910 \times \Delta\theta$ C₁

A₁

[2]

 $\Delta \theta = 8.5 \times 10^{-4} \text{ K}$

Q33.

- 4 (a) acceleration/force proportional to displacement (from a fixed point) M1 either acceleration and displacement in opposite directions or acceleration always directed towards a fixed point A1 [2]
 - (b) (i) zero & 0.625 s or 0.625 s & 1.25 s or 1.25 s & 1.875 s or 1.875 s & 2.5 s [1] A1

(ii) 1.
$$\omega = 2\pi/T \text{ and } v_0 = \omega x_0$$
 C1
 $\omega = 2\pi/1.25$ = 5.03 rad s⁻¹ C1

$$v_0 = 5.03 \times 3.2$$

= 16.1 cm s⁻¹ (allow 2 s.f.) A1 [3]

2.
$$v = \omega \sqrt{(x_0^2 - x^2)}$$

either $\frac{1}{2}\omega a = \omega \sqrt{(x_0^2 - x^2)}$ or $\frac{1}{2}\times 16.1 = 5.03\sqrt{(3.2^2 - x^2)}$ C1
 $\frac{1}{2}\times 16.1 = 5.03\sqrt{(3.2^2 - x^2)}$ A1 [2]

(c) sketch: loop with origin at its centre M1 correct intercepts & shape based on (b)(ii) A1 [2]

