

Q1.

| 7   | (a) |       | electrons fired at metal target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [5] |
|-----|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (b) | (i)   | increase cathode/tube currentB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |     | (ii)  | increase anode voltageB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|     |     | (iii) | use aluminium filter (allow metal filter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [3] |
|     | (c) |       | $I = I_0 e^{-\mu x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [3] |
| Q2. |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 8   | (a) |       | produces greater intensity (at focus) limits region of cell damage allows for accurate guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [2] |
|     | (b) |       | laser beam cauterises tissue can produce coagulation vaporisation of water in cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [2] |
| Q3. |     |       | The same of the sa |     |
| 9   | (a) |       | ability to detect (small) changes in loudness/intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [2] |
|     | (b) |       | $\Delta I.L = 10 \lg(\Delta I/I) \text{ or } I.L = 10 \lg(I/I_0).$ C1<br>3.6 10 $\lg(I_2/(4.5 \times 10^{-5}).$ C1<br>$I_2 = 9.0 \times 10^{-5} \text{ Wm}^{-2}, \Delta I = 4.5 \times 10^{-5} \text{ W m}^{-2}.$ A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [3] |

Q4.



| (a) X-ray beam directed through body onto detector (plate)<br>different tissues absorb/attenuate beam by different amounts<br>giving 'shadow' image of structures<br>any other detail e.g. comment re sharpness or contrast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1<br>B1<br>B1<br>B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) X-ray image is flat OR 2-dimensional (1) CT scan takes many images of a slice at different angles (1) these build up an image of a slice through the body (1) series of images of slices is made (1) so that 3D image can be built up (1) image can then be rotated (1) 1 mark for each point, max 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| large / strong (constant) magnetic field nuclei rotate about direction of field / precess radio frequency / r.f. pulse causes resonance in nuclei , nuclei absorb energy (pulse) is at the Larmor frequency on relaxation / nuclei de-excite emit (pulse of) r.f. detected and processed non-uniform field (superimposed) allows for position of nuclei to be determined and for location of detection to be changed (1) (B6 plus any two extra details, 1 each, max 2)                                                                                                                                                                                                                                                                                                                          | B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (a) <u>pulse</u> of ultrasound reflected at boundaries / boundary received / detected (at surface) by transducer signal processed and displayed (1) time between transmission and receipt of pulse gives (information about) depth of boundary (1) reflected intensity gives information as to nature of boundary (1) (any four points, 1 each, max 4)  (b) (i) coefficient = (Z <sub>2</sub> - Z <sub>1</sub> ) <sup>2</sup> / (Z <sub>2</sub> + Z <sub>1</sub> ) <sup>2</sup> = (6.3 - 1.7) <sup>2</sup> / (6.3 + 1.7) <sup>2</sup> = 0.33 (unit quoted, then -1)  (ii) fraction = exp(-\(\mu x\)) = exp(-23 \times 4.1 \times 10^{-2}) = 0.39  (iii) intensity = 0.33 \times 0.39 <sup>2</sup> \times I = 0.050 I (do not allow e.c.f. from (i) and (ii) if these answers are greater than 1) | B4 C1 A1 C1 A1 C1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [4]<br>[2]<br>[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | different tissues absorb/attenuate beam by different amounts giving 'shadow' image of structures any other detail e.g. comment re sharpness or contrast  (b) X-ray image is flat OR 2-dimensional (1) CT scan takes many images of a slice at different angles (1) these build up an image of a slice through the body (1) series of images of slices is made (1) so that 3D image can be built up (1) image can then be rotated (1) 1 mark for each point, max 5  large / strong (constant) magnetic field nuclei rotate about direction of field / precess (1) radio frequency / r.f. pulse causes resonance in nuclei, nuclei absorb energy (1) (pulse) is at the Larmor frequency (1) on relaxation / nuclei de-excite emit (pulse of) r.f. detected and processed non-uniform field (superimposed) allows for position of nuclei to be determined and for location of detection to be changed (1) (166 plus any two extra details, 1 each, max 2)  (a) pulse of ultrasound reflected (at surface) by transducer (1) signal processed and displayed time between transmission and receipt of pulse gives (information about) depth of boundary (1) reflected intensity gives information as to nature of boundary (1) reflected intensity gives information as to nature of boundary (1) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | different tissues absorb/attenuate beam by different amounts giving 'shadow' image of structures B1 any other detail e.g. comment re sharpness or contrast B1  (b) X-ray image is flat OR 2-dimensional (1) CT scan takes many images of a slice at different angles (1) these build up an image of a slice through the body (1) series of images of slices is made (1) so that 3D image can be built up (1) image can then be rotated (1) 1 mark for each point, max 5 B5    large / strong (constant) magnetic field nuclei rotate about direction of field / precess (1) radio frequency / r.f. pulse causes resonance in nuclei , nuclei absorb energy (1) (pulse) is at the Larmor frequency (1) on relaxation / nuclei de-excite emit (pulse of) r.f. B1 detected and processed B1 allows for position of nuclei to be determined B1 allows for position of nuclei to be determined B1 and for location of detection to be changed (1) (B6 plus any two extra details, 1 each, max 2) B2    (a) pulse of ultrasound reflected at boundaries / boundary (1) received / detected (at surface) by transducer (1) signal processed and displayed (1) time between transmission and receipt of pulse gives (information about) depth of boundary (1) reflected intensity gives information as to nature of boundary (1) reflected intensity gives information as to nature of boundary (1) reflected intensity gives information as to nature of boundary (1) reflected intensity gives information as to nature of boundary (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) |

Q7.



| 10 (a) X-ray taken of slice / plane / section repeated at different angles images / data is processed combined / added to give (2-D) image of slice repeated for successive slices to build up a 3-D image image can be viewed from different angles / rotated                                                                                                                                       | B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>max 6 | [6]              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|
| (b) (i) 16                                                                                                                                                                                                                                                                                                                                                                                           | A1                                        | [1]              |
| (ii) evidence of deducting 16 then dividing by 3 to give  3 2 6 5                                                                                                                                                                                                                                                                                                                                    | C1<br>A1                                  | [2]              |
| Q8.                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                         |                  |
| opposite faces /two sides coated (with silver) to act as electrodes either molecular structure indicated or centres of (+) and (–) charge not coincident potential difference across crystal causes crystal to change shape alternating voltage (in US frequency range) applied across crystal causes crystal to oscillate / vibrate (crystal cut) so that it vibrates at resonant frequency (max 6) | B B B B B B B                             | 1<br>1<br>1<br>1 |
| Q9.  10 (a) product of density (of medium) and speed of sound (in the medium)                                                                                                                                                                                                                                                                                                                        | B1                                        | [1]              |

(b)  $\alpha$  would be nearly equal to 1  $\frac{1}{either}$  reflected intensity would be nearly equal to incident intensity  $\frac{1}{either}$  reflected intensity would be small  $\frac{1}{either}$  M1  $\frac{1}{either}$  Transmitted intensity would be small  $\frac{1}{either}$  M1  $\frac{1}{eithe$ 

(c) (i) 
$$\alpha = (1.7 - 1.3)^2 / (1.7 + 1.3)^2$$
 C1  
= 0.018 A1 [2]

(ii) attenuation in fat = 
$$\exp(-48 \times 2x \times 10^{-2})$$
 C1  
0.012 = 0.018  $\exp(-48 \times 2x \times 10^{-2})$  C1  
 $x = 0.42 \text{ cm}$  A1

Q10.

[3]



| 10 | strong / large (uniform) magnetic field               |        | B1 |     |
|----|-------------------------------------------------------|--------|----|-----|
|    | nuclei precess / rotate about field direction         | (1)    |    |     |
|    | radio frequency pulse                                 |        | B1 |     |
|    | at Larmor frequency                                   | (1)    |    |     |
|    | causes resonance / nuclei absorb energy               |        | B1 |     |
|    | on relaxation / de-excitation, nuclei emit r.f. pulse |        | B1 |     |
|    | pulse detected and processed                          | (1)    |    |     |
|    | non-uniform field superposed on uniform field         |        | B1 |     |
|    | allows position of resonating nuclei to be determined |        | B1 |     |
|    | allows for location of detection to be changed        | (1)    |    |     |
|    | (six points, 1 each plus any two extra – max 8)       | 1/1/20 |    | [8] |
|    |                                                       |        |    |     |

# Q11.

| 11 (a) (i) | e.m. radiation produced whenever charged particle is accelerated electrons hitting target have distribution of accelerations                                                                                                                                                                                                              | M1<br>A1 | [2] |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
| (ii)       | $ \begin{array}{ll} \textit{either} & \textit{wavelength shorter/shortest for greater/greatest acceleration} \\ \textit{or} & \lambda_{\min} = \textit{hc/E}_{\max} \\ \textit{or} & \textit{minimum wavelength for maximum energy} \\ \textit{all electron energy given up in one collision/converted to single photon} \\ \end{array} $ | B1<br>B1 | [2] |
| (b) (i)    | hardness measures the penetration of the beam greater hardness, greater penetration                                                                                                                                                                                                                                                       | C1<br>A1 | [2] |
| (ii)       | controlled by changing the anode voltage higher anode voltage, greater penetration/hardness                                                                                                                                                                                                                                               | C1<br>A1 | [2] |
| (c) (i)    | long-wavelength radiation more likely to be absorbed in the body/less likely to penetrate through body                                                                                                                                                                                                                                    | B1       | [1] |
| (ii)       | (aluminium) filter/metal foil placed in the X-ray beam                                                                                                                                                                                                                                                                                    | B1       | [1] |

# Q12.

| 12 | (a) | strong uniform (magnetic) field either aligns nuclei                                                                       | M1       |     |
|----|-----|----------------------------------------------------------------------------------------------------------------------------|----------|-----|
|    |     | or gives rise to Larmor/resonant frequency in r.f. region non-uniform (magnetic) field either enables nuclei to be located | A1<br>M1 |     |
|    |     | or changes the Larmor/resonant frequency                                                                                   | A1       | [4] |
|    | (b) | (i) difference in flux density = $2.0 \times 10^{-2} \times 3.0 \times 10^{-3} = 6.0 \times 10^{-5} \text{ T}$             | A1       | [1] |
|    |     | (ii) $\Delta f = 2 \times c \times \Delta B$<br>= $2 \times 1.34 \times 10^8 \times 6.0 \times 10^{-5}$                    | C1       |     |
|    |     | $= 2 \times 1.34 \times 10^{-1} \times 6.0 \times 10^{-1}$ $= 1.6 \times 10^{4} \text{ Hz}$                                | Δ1       | [2] |

Q13.



| 10 | (a) | e.g. beam is divergent/obeys inverse square law |
|----|-----|-------------------------------------------------|
|    |     | absorption (in block)                           |
|    |     | scattering (of beam in block)                   |
|    |     | reflection (at boundaries)                      |

(any two sensible suggestions, 1 each)

(b) (i) 
$$I = I_0 \exp(-\mu x)$$
  
 $I_0/I = \exp(0.27 \times 2.4)$   
= 1.9

A1

C<sub>1</sub>

C<sub>1</sub>

(ii) 
$$I_0/I = \exp(0.27 \times 1.3) \times \exp(3.0 \times 1.1)$$
  
= 1.42 × 27.1  
= 38.5

A1

[2]

(c) either much greater absorption in bone than in soft tissue or  $I_0/I$  much greater for bone than soft tissue

[1]

# Q14.

10 (a) sharpness: how well the edges (of structures) are defined contrast: difference in (degree of) blackening between structures B1 B1 [2]

(b) e.g. scattering of photos in tissue/no use of a collimator/no use of lead grid large penumbra on shadow/large area anode/wide to am large pixel size

(any two sensible suggestions, 1 each)

B2 [2]

(c) (i)  $I = I_0 e^{-\mu x}$ ratio =  $\exp(-2.85 \times 3.5) / \exp(-0.98 \times 8.0)$ =  $(4.65 \times 10^{-5}) / (5.00 \times 0^{-5})$ = 0.093

C1

(ii) either large difference (in intensities)
or ratio much less than 1.0
so good contrast

A1

[3]

(answer gives in (c)(ii) must be consistent with ratio given in (c)(i))

M1 A1 [2]

[2]

### Q15.

10 (a) product of density and speed of sound / wave (density of medium and) speed of sound / wave in medium M1 A1

(b) if  $(Z_1 - Z_2)$  is small, mostly transmission if  $(Z_1 - Z_2)$  is large, mostly reflection (if 'mostly' not stated allow 1/2 marks for these first two marks) either reflection / transmission also depends on  $(Z_1 + Z_2)$ 

M1 M1

**B1** 

or intensity reflection coefficient =  $(Z_1 - Z_2)^2 / (Z_1 + Z_2)^2$ 

A1 [3]

(c) e.g. smaller structures can be distinguished because better resolution at shorter wavelength / higher frequency

1 [2]



# Q16.

|    | 11                                   | (a)    | a) changing voltage changes energy / speed of <u>electrons</u> changing electron energy changes maximum X-ray photon energy  A1 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     |     |  |
|----|--------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------|-----|--|
|    |                                      | (b)    | (i)                                                                                                                             | 1.                    | loss of power / energy / intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | B1                  | [1] |  |
|    |                                      |        |                                                                                                                                 | 2.                    | intensity changes when beam not parallel decreases when beam is divergent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | C1<br>A1            | [2] |  |
|    |                                      |        | (ii)                                                                                                                            |                       | to = $(\exp \{-2.9 \times 2.5\})$ / $(\exp \{-0.95 \times 6.0\})$<br>= 0.21 (min. 2 sig. fig.)<br>Hues of both lengths incorrect by factor of $10^{-2}$ to give ratio of 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.985 scores 1                         | C1<br>A1<br>1 mark) | [2] |  |
| Q1 | 7.                                   |        |                                                                                                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     |     |  |
| 9  | (                                    | a) p   | orodi                                                                                                                           | uct c                 | of density (of medium) and speed of sound (in medium)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | B1                  | [1] |  |
|    | (b) difference in acoustic impedance |        |                                                                                                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     | [2] |  |
|    | (                                    | r<br>( | reflectime                                                                                                                      | cted<br>cted<br>for r | ultrasound (directed into body) at boundary (between tissues) l pulse is) detected and processed eturn of echo gives (information on) depth f reflection gives information on tissue structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | B1<br>B1<br>B1      | [5] |  |
| Q1 | 8.                                   |        |                                                                                                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                     |     |  |
| 1  | 1                                    |        | any                                                                                                                             | furth                 | ge: (thin) slice (through structure) ner detail e.g. built up from many 'slices' / 3-D image age: 'shadow' image (of whole structure) / 2-D image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                      | B1<br>B1<br>B1      | [3] |  |
|    |                                      |        | thes<br>repe<br>to bu<br>3-D<br>com                                                                                             | e imeated             | age of slice taken from many different angles lages are combined (and processed) of for many different slices up a 3-D image ge can be rotated er required to store and process huge quantity of data of the store and process huge for the store and pr | (1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1) | B5                  | [5] |  |

Q19.



| 11         |        |       | T magnetic field applied along body (allow 'across') (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (4)     |       |
|------------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
|            | r.t. p | ulse  | appliednydrogen nuclei / protons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1)     |       |
|            |        |       | ate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |
|            |        |       | return to equilibrium state / after relaxation time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |
|            |        |       | e) emitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |       |
|            |        |       | etected, processed and displayed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |       |
|            |        |       | t frequency depends on magnetic field strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |       |
|            | calib  | rate  | d non-uniform field enables nuclei to be located                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1)     |       |
|            | any    | six p | points, one mark each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B6      | [6]   |
|            |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Tota   | l: 6] |
| Q20        | ).     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |
| 10         | (a)    | (i)   | e.m. radiation / photons is produced whenever a charged particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0       |       |
|            | , ,    | . ,   | is accelerated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |       |
|            |        |       | wavelength depens on magnitude of acceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |       |
|            |        |       | electrons have a distribution of accelerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |       |
|            |        |       | so continuous spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A0      | [3]   |
|            |        | (ii)  | either when electron loses all its energy in one collision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |       |
|            |        | 1     | or when energy of electron produces a single photon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1      | [1]   |
|            |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |
|            |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D.4     |       |
|            | (b)    | (1)   | parallel beam (in matter) $I = I_0 \exp(-\mu x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1      |       |
|            |        |       | $I = I_0 \exp(-\mu x)$<br>$I, I_0, (\mu) \text{ and } x \text{ explained}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IVI I   | [3]   |
|            |        |       | 1, 1 <sub>0</sub> , (μ) and x explained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1      | [9]   |
|            |        | (ii)  | either low-energy photons absorbed (much) more readily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |
|            |        |       | or low-energy photons (far) less penetrating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1      |       |
|            |        |       | low-energy photons do not contribute (p.X-ray image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1      | - 22  |
|            |        |       | low energy photons could cause its see damage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1      | [3]   |
|            |        |       | WALL WES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [Total: | : 10] |
|            |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |
| <b>Q21</b> |        |       | A •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |       |
|            |        |       | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |       |
|            |        |       | in the second se |         |       |
|            |        |       | . 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       |
|            |        |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |       |



| 10  | ) (a | (i)   | der                 | sity × speed of wave (in the medium)                                                                                                                                                                                                           | B1                                     | [1] |
|-----|------|-------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----|
|     |      | (ii   | ρ:                  | = $(7.0 \times 10^6) / 4100$<br>= $1700 \text{ kg m}^{-3}$                                                                                                                                                                                     | A1                                     | [1] |
|     | (b   | ) (i) | <i>I</i> =          | $I_{T}$ + $I_{R}$                                                                                                                                                                                                                              | B1                                     | [1] |
|     |      | (ii)  | 1. 6                | $\alpha = (0.1 \times 10^6)^2 / (3.1 \times 10^6)^2$<br>= 0.001                                                                                                                                                                                | C1<br>A1                               | [2] |
|     |      |       | <b>2</b> . <i>a</i> | <i>α</i> ≈ 1                                                                                                                                                                                                                                   | A1                                     | [1] |
|     | (c)  | or    | ther                | very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body no gel, majority reflection with gel, little reflection when wave travels in or out of the body | M1<br>M1<br>A1<br>(M1)<br>(M1)<br>(A1) | [3] |
| Q22 | 2.   |       |                     |                                                                                                                                                                                                                                                |                                        |     |
| 9   | (a)  | (i)   | edge                | es can be (clearly) distinguished                                                                                                                                                                                                              | B1 [                                   | [1] |
|     |      | (ii)  |                     | size of X-ray source / anode / target / aperture scattering of X-ray beam pixel size two, 1 each) er detail e.g. use of lead grid                                                                                                              | B2<br>B1                               | [3] |
|     | (b)  | CT    | scan:               | age involves a <u>single</u> exposure<br>exposure of a <u>slice</u> from many different angles<br>for different slices                                                                                                                         | B1<br>M1<br>A1                         |     |

### Q23.

11 (a) (i) 
$$I/I_0 = \exp(-1.5 \times 2.9)$$
 C1  $= 0.013$  A1 [2] (ii)  $I/I_0 = \exp(-4.6 \times 0.95)$   $= 0.013$  A1 [1] (b) attenuation (coefficients) in muscle and in fat are similar attenuation (coefficients) in bone and muscle / fat are different contrast depends on difference in attenuation B1 [3]

CT scan involves a (much) greater exposure

## Q24.

B1

[4]



| 10 | quartz/piezo-electric crystal                                                                        |                |                                                                  | B1 |  |  |
|----|------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------|----|--|--|
|    | p.d. across crystal causes                                                                           | either<br>or   | centres of (+) and (-) charge to move<br>crystal to change shape | B1 |  |  |
|    | alternating p.d. (in ultrasound<br>crystal cut to produce resonation<br>when crystal made to vibrate | B1<br>B1<br>M1 |                                                                  |    |  |  |
|    | alternating p.d. produced across the crystal                                                         |                |                                                                  |    |  |  |

## Q25.

- 11 (a) sharpness: ease with which edges of structures can be seen B1 contrast: difference in degree of blackening between structures B1 [2]
  - (b) (i)  $I = I_0 e^{-\mu x}$  C1  $I/I_0 = \exp(-0.20 \times 8)$  = 0.20 A1 [2]
    - (ii)  $I/I_0 = \exp(-\mu_1 \times x_1) \times \exp(-\mu_2 \times x_2)$  (could be three terms) C1  $I/I_0 = \exp(-0.20 \times 4) \times \exp(-12 \times 4)$  C1  $I/I_0 = 6.4 \times 10^{-22}$  or  $I/I_0 \approx 0$  A1 [3]
  - (c) (i) sharpness unknown/no B1 [1]
    - (ii) contrast good/yes (ecf from (b)) B1 [1]

## Q26.

10 X-ray images taken from different angles / X-rays directed from different angles **B1** of one section/slice all images in the same plane (1)images combined to give image of section/slice **B1** images of successive sections/slices combined **B1** image formed using a computer image formed is 3D image (1)that can be rotated/viewed from different angles (1)(four B-marks plus any two additional marks) B<sub>2</sub> [6]

Q27.



| 10   | (a) | background reading = 19 |                                                                                                                                                                                                            |                  |                      |     |  |  |
|------|-----|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|-----|--|--|
|      | (b) | A = B = C = D = (Allo   | 5<br>9                                                                                                                                                                                                     |                  | A1<br>A1<br>A1<br>A1 | [4] |  |  |
|      | (c) | (i)                     | either 5, 14 or 14, 5 (A+D, B+C or v.v.)                                                                                                                                                                   |                  | B1                   | [1] |  |  |
|      |     | (ii)                    | Three numbers and 'inside' number is 8 (B+D) Three numbers and 'outside' numbers are either 2,9 or 9,2 (A,C o                                                                                              | or <i>v.v.</i> ) | B1<br>B1             | [2] |  |  |
| Q28. |     |                         |                                                                                                                                                                                                            |                  |                      |     |  |  |
| 10   | (a) |                         | se (of ultrasound)<br>duced by quartz / piezo-electric crystal                                                                                                                                             | (1)              | B1                   |     |  |  |
|      |     | refle                   | ected from boundaries (between media) ected pulse detected                                                                                                                                                 |                  | B1<br>B1             |     |  |  |
|      |     | sign                    | the ultrasound transmitter all processed and displayed ansity of reflected pulse gives information about the boundary                                                                                      | (1)              | B1                   |     |  |  |
|      |     | time                    | e delay gives information about depth<br>or B marks plus any two from the four, max. 6)                                                                                                                    | (1)              | B2                   | [6] |  |  |
|      | (b) |                         | rter wavelength<br>aller structures resolved / detected (not more sharpness)                                                                                                                               |                  | B1<br>B1             | [2] |  |  |
|      | (c) | (i)                     | $I = I_0 e^{-\mu x}$<br>ratio = exp(-23 × 6.4 × 10 <sup>-2</sup> )<br>= 0.23                                                                                                                               |                  | C1<br>C1<br>A1       | [3] |  |  |
|      |     | (ii)                    | later signal has passed through greater thickness of medium so has greater attenuation / greater absorption / smaller intensi                                                                              | ty               | M1<br>A1             | [2] |  |  |
| Q29. |     |                         |                                                                                                                                                                                                            |                  |                      |     |  |  |
| 10   | (a) | spi                     | clei spin/precess n/precess about direction of magnetic field ner frequency of precession depends on magnetic field strength large field means frequency in radio frequency range                          |                  | B1<br>B1             | [3] |  |  |
|      | (b) | of s                    | n-uniform field means frequency of precession different in dif-<br>subject<br>ables location of precessing nuclei to be determined<br>ables thickness of slice to be varied/location of slice to be change |                  | B1<br>B1<br>B1       | [3] |  |  |

Q30.



| 12 (8 | t<br>t<br>r | taken from different angles<br>to give image of the section/slice<br>repeated for many slices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1<br>M1<br>A1<br>M1<br>A1 [5] |  |
|-------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|
| (t    |             | 12 N : 10 N : 1 | C1<br>C1                       |  |
|       | F           | P = 5 Q = 9 R = 7 S = 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |  |
|       | (           | (four correct 2/2, three correct 1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A2 [4]                         |  |
| Q31.  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |  |
| 11    | (a)         | X-ray: flat/shadow/2D image regardless of depth of object/depth not indicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1<br>B1                       |  |
|       |             | CT scan: built up from (many) images at different angles image is three-dimensional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1<br>B1                       |  |
|       |             | image can be rotated/viewed at different angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1 [5]                         |  |
|       | (b)         | image is three-dimensional image can be rotated/viewed at different angles  (i) $I = I_0 e^{-\mu x}$ $0.25 = e^{-0.69x}$ $x = 2.0 \text{ mm } (allow 1 \text{ s.f.})$ (ii) for aluminium, $I/I_0 = e^{-0.46 \times 2.4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C1                             |  |
|       |             | $x = 2.0 \mathrm{mm} (allow 1 s.f.)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1 [2]                         |  |
|       |             | (ii) for aluminium, $I/I_0 = e^{-0.46 \times 2.4}$<br>= 0.33<br>fraction = 0.33 × 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C1                             |  |

Q32.

= 0.083

= 10 lg(0.083) = (-) 10.8 dB (allow 2 s.f.)

(iii)  $gain/dB = 10lg(I/I_0)$ 

with negative sign

| 11 | (a) | X-ray beam contains many wavelengths aluminium filter absorbs long wavelength X-ray radiation that would be absorbed by the body (and not contribute to the image)    | M1<br>A1             | [3] |      |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|------|
|    | (b) | CT scan consists of (many) X-ray <u>images</u> of a slice<br>and there are many slices<br>X-ray image is a single exposure<br>(so much) greater exposure with CT scan | M1<br>A1<br>B1<br>B1 | [4] | Q33. |

[2]

[3]

A<sub>1</sub>



| 11 | (a) | product of density and speed               | M1 |     |
|----|-----|--------------------------------------------|----|-----|
|    |     | density of medium, speed of wave in medium | A1 | [2] |
|    |     | (not "speed of light", 0/2)                |    |     |

(b) (i) 
$$\alpha = (6.4 - 1.7)^2/(6.4 + 1.7)^2$$
 C1  
= 0.34 A1 [2]

(ii) 
$$I/I_0 = e^{-\mu x}$$
 C1  
=  $\exp(-23 \times 3.4 \times 10^{-2})$  C1  
= 0.46 A1 [3]

(iii) 
$$I_R/I = (0.46)^2 \times 0.34$$
 C1  
= 0.072 A1 [2]



whith the dale citalitie.