

Q1.

	5 (a	1)		centripetal force = mv^2/r	B1 B1	[3]
	(t)		$r_{\alpha}/r_{\beta} = (m_{\alpha}/m_{\beta}) \times (q_{\beta}/q_{\alpha})$ = $(4 \times 1.66 \times 10^{27})/(9.11 \times 10^{-31} \times 2)$ = 3.64×10^{3}	C1 A2	[3]
	(0	;)	(i)	r_{α} = (4 x 1.66 x 10 ⁻²⁷ x 1.5 x 10 ⁶)/(1.2 x 10 ⁻³ x 2 x 1.6 x 10 ⁻¹⁹) = 25.9 m	A2	
			(ii)	$r_{\beta} = 25.9 \times 3.64 \times 10^3 = 7.13 \times 10^{-3} \text{ m}$	A1	[3]
	(0	i)	(i)	deflected upwardsbut close to original direction	B1	
			(ii)	opposite direction to α-particle and 'through side'	B1	[3]
Q2.						
6	(a)	(i)		field in core must be changing at an e.m.f./current is induced in the secondary	M1 A1	[2]
		(ii)		er = VI <u>ut</u> power is constant so if V_S increases, I_S decreases	M1 A1	[2]
	(b)	(i)	same	e shape and phase as I _P graph	B1	[1]
		(ii)		e frequency ect phase w.r.t. Fig. 6.3	M1 A1	[2]
		(iii) ½π <u>r</u>	ad or 90°	B1	[1]
Q3.				· him		
6	(a)	(i)	arrow	Bid correct direction (down the page)	В1	
		(ii)	arrow	F in correct direction (towards Y)	B1	[2]
	(b)	(i)		two bodies interact, force on one body is equal but opposite in on to force on the other body.	В1	[1]
		(ii)	directi	on opposite to that in (a)(ii)	B1	[1]
	(c)	mer	ntion of e betw	reasonable values of <i>I</i> and <i>d</i> i expression $F = BIL$ een wires is small to weight of wire	B1 B1 M1 A1	[4]

Q4.

8	(a)	arro	ow labelled E pointing down the page	B1	[1]
	(b)	(i)	Bqv = qE forces are independent of mass and charge 'cancels' so no deviation	M1 M1 A1	[3]
		(ii)	magnetic force > electric force so deflects 'downwards'	M1 M1 A1	[3]

Q5.

6	(a) parallel (to the field)	B1	[1]

(b) (i) torque =
$$F \times d$$

 $2.1 \times 10^{-3} = F \times 2.8 \times 10^{-2}$ C1
 $F = 0.075 \text{ N}$ A1 [2]
(use of 4.5 cm scores no marks)

(ii) zero A1 [1]

(c)
$$F = BILN(\sin\theta)$$
 C1
 $0.075 = B \times 0.170 \times 4.5 \times 10^{-2} \times 140$ M1
 $B = 7.0 \times 10^{-2} \text{ T} = 70 \text{ mT}$ A0 [2]

(ii) change in flux linkage =
$$BAN$$

= $0.070 \times 4.5 \times 10^{-2} \times 2.8 \times 10^{-2} \times 140$ C1
= 0.0123 Wb turns
induced e.m.f = $0.0123 / 0.14$ C1
= 88 mV A1 [3]

(Note: This is a simplified treatment. A full treatment would involve the averaging of B $\cos\theta$ leading to a $\sqrt{2}$ factor)

Q6.

6	(a)	unit of magnetic flux density / magnetic field strength (uniform) field normal to wire carrying current of 1 A giving force (per unit length) of 1 N m ⁻¹						
	(b)	(i)	force on magnet / balance is downwards (so by Newton's third law) force on wire is upwards pole P is a north pole	B1 M1 A1	[3]			
		(ii)	F = BIL and $F = mg$ (g missing, then 0/3 in (ii)) 2.3 × 10 ⁻³ × 9.8 = B × 2.6 × 4.4 × 10 ⁻² (g = 10, loses this mark) B = 0.20 T	C1 C1 A1	[3]			
	(c)		ding for maximum current = $2.3 \times \sqrt{2}$ I variation = $2 \times 2.3 \times \sqrt{2}$ = 6.5 g	C1 A1	[2]			
Q7.								
7								
Q8.								
	5 (a	a) (i)	$V_{\rm H}$ depends on angle between (plant) of) probe and B -field either $V_{\rm H}$ max when plane and B field are normal to each other or $V_{\rm H}$ zero when plane and B field are parallel	B1				
		(ii)	 V_H depends on sine of angle between plane and B-field calculates V_Hr at reast three times to 1 of constant so yelid or approx constant so yelid 	B1 M1	[2]			
			to 1 s.f. constant so valid or approx constant so valid or to 2 s.f., not constant so invalid	A1	[2]			
			2 straight time passes through origin	B1	[1]			
	(t	o) (i)	e.m.f. induced is proportional / equal to rate of change of (magnetic) flux (linkage) constant field in coil / flux (linkage) of coil does not change	M1 A1 B1	[3]			
		(ii)	e.g. vary current (in wire) / switch current on or off / use a.c. current rotate coil move coil towards / away from wire (1 mark each, max 3)	В3	[3]			

Q9.

7	(a)	arr	ow pointing up the page	B1	[1]
	(b)) (i)	Eq = Bqv $v = (12 \times 10^3) / (930 \times 10^{-6})$ $= 1.3 \times 10^7 \text{ m s}^{-1}$	C1 A1	[3]
		(ii)	$Bqv = mv^2 / r$ $q/m = (1.3 \times 10^7) / (7.9 \times 10^{-2} \times 930 \times 10^{-6})$ = 1.8×10^{11} C kg ⁻¹	C1 C1 A1	[3]
Q10					
6	(a)	(i)	straight line with positive gradient through origin	M1 A1	[2]
		(ii)	maximum force shown at θ = 90° zero force shown at θ = 0° reasonable curve with F about ½ max at 30°	M1 M1 A1	[3]
	(b)	(i)	force on electron due to magnetic field force on electron normal to magnetic field and direction of electron	B1 B1	[2]
		(ii)	quote / mention of (Fleming's) left hand rule electron moves towards QR	M1 A1	[2]
Q11					
5	(a)		on (of space) where there is a force er on / produced by magnetic pole on / produced by current carrying conductor / moving charge	M1 A1	[2]
	(b)	(i)	force on particle is (always) normal to velocity / direction of travel speed of particle is constant	B1 B1	[2]
		(ii)	magnetic force provides the centripetal force $mv^2 / r = Bqv$ r = mv / Bq	B1 M1 A0	[2]
	(c)	(i)	direction from 'bottom to top' of diagram	B1	[1]
		(ii)	radius proportional to momentum ratio = 5.7 / 7.4	C1	
			= 0.77 (answer must be consistent with direction given in (c)(i))	A1	[2]

Q12.

5	(a)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) / rate of flux cutting	M1 A1	[2]
		(ii)	 moving magnet causes change of flux linkage speed of magnet varies so varying rate of change of flux magnet changes direction of motion (so current changes direction) 	B1 B1 B1	[1] [1] [1]
	(b)		iod = 0.75s quency = 1.33Hz	C1 A1	[2]
	(c)	gra	ph: smooth correctly shaped curve with peak at f_0 A never zero	M1 A1	[2]
	(d)	(i)	resonance	B1	[1]
		(ii)	e.g. quartz crystal for timing / production of ultrasound	A1	[1]
Q13	3.			,	
7	7 (a) s	ketch: concentric circles (minimum of 3 circles) separation increasing with distance from wire correct direction	M1 A1 B1	[3]
	(b) (i) arrow direction from wire B towards wire A	B1	[1]
		(i	i) either reference to Newton's third law or force on each wire proportional or product of the two currents so forces are equal	M1 A1	[2]
	(٧	orce <u>always</u> towards wire A/ <u>always</u> in same direction aries from zero (to a maximum value) (1) ariation is sinusoidal / sin (1)	B1	
Q1 4	I .	(ariation is sinusoidal / sin (1) at) twice frequency of current (1) any two, one each)	B2	[3]

www.youtube.com/megalecture

5	(a)	cur	(long) straight conductor carrying current of 1A M1 current/wire normal to magnetic field M1 (for flux density 1T,) force per unit length is 1Nm ⁻¹ A1			[3]
	(b)	(i)	(originally) downward force on magnet (due to current) by Newton's third law (allow "N3") upward force on wire	B1 M1 A1		[3]
		(ii)	F = BIL 2.4 × 10 ⁻³ × 9.8 = B × 5.6 × 6.4 × 10 ⁻² B = 0.066 T (need 2 SF) (g missing scores 0/2, but g = 10 leading to 0.067T scores 1/2)	C1 A1		[2]
	(c)		w reading is 2.4√2g her changes between +3.4g and –3.4g total change is 6.8g	C1 A1		[2]
Q15	•					
5	(a)	 (a) (uniform magnetic) flux normal to long (straight) wire carrying a current of 1 A (creates) force per unit length of 1 N m⁻¹ 				[2]
	(b)	(i)	flux density = $4\pi \times 10^{-7} \times 1.5 \times 10^{3} \times 3.5$ = 6.6×10^{-3} T		C1 A1	[2]
		(ii)	flux linkage = $6.6 \times 10^{-3} \times 28 \times 10^{-4} \times 160$ = 3.0×10^{-3} Wb		C1 A1	[2]
	(c)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)		M1 A1	[2]
		(ii)	e.m.f. = $(2 \times 3.0 \times 10^{-3}) / 0.80$ = 7.4×10^{-3} V		C1 A1	[2]

Q16.

5 (a) (uniform magnetic) flux normal to long (straight) wire carrying a current of 1 A

	(cre	eates) force per unit length of 1 N m ⁻¹	A1	[2]
(b) (i)	sketch: concentric circles increasing separation (must show more than 3 circles) correct direction (anticlockwise, looking down)	M1 A1 B1	[3]
	(ii)	B = $(4\pi \times 10^{-7} \times 6.3) / (2\pi \times 4.5 \times 10^{-2})$ = 2.8×10^{-5} T	C1 A1	[2]
	(iii)	$F = BIL (\sin \theta)$ = 2.8 × 10 ⁻⁵ × 9.3 × 1 $F/L = 2.6 \times 10^{-4} \text{ N m}^{-1}$	C1	[0]
		$F/L = 2.6 \times 10^{-6} \text{ Nm}^{-6}$	A1	[2]
(c)	rea	be per unit length depends on product I_XI_Y / by Newton's third law / action and ction are equal and opposite same for both	M1 A1	[2]
Q17.				
6. (a))	e.g. E-field, force independent of speed, B-field, force ∞ speed E-field, force along field direction, B-field, force normal etc		[4]
(b)	(i) (ii)			[4]
(c)	(i) (ii)		C1	[3]
(d)	gravitational force $<< F_B$ or F_E	B1 .	[1]
Q18.				
7 (a)	(i)	the wire cuts magnetic field		
	(ii)		31	[4]
(b)	$x_0 = 1.5 \text{ mV}$ (allow ±0.1)	C1	
		$x = 1.5 \sin 2090t$		[4]

Q19.

5	(a)		field producing force of 1.0 N m ⁻¹ on wire <i>OR B = F/IL</i> sin 2M1 carrying current of 1.0 A normal to field <i>OR</i> symbols explained A1		[2]
	(b)	(i)	$\phi = BA$ = 1.8 x 10 ⁻⁴ x 0.60 x 0.85		[2]
		(ii)1	$\Delta \phi$ = 9.18 x 10 ⁻⁵ Wb		
		(ii)2	e = $(N\Delta\phi)/\Delta t$ = $(9.18 \times 10^{-5})/0.20$		[3]
		(iii)	there is an e.m.f. and a complete circuit OR no resultant e.m.f. from other three sides OR no e.m.f. in AB so yes		[1]
Q20.					
4	(a)	(i)	50 mT	1	
		(ii)	flux linkage = BAN = $50 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150 = 3.0 \times 10^{-4} \text{ Wb}$	1	[3]
			(allow 49 mT \rightarrow 2.94 x 10 ⁻⁴ Wb or 51 mT \rightarrow 3.06 x 10 ⁻⁴ Wb)		
	(b)	propo	i./induced voltage (do not allow current) ortional/equal to of change/cutting of flux (linkage)	1	[2]
	(c)	(i)	new flux linkage = $8.0 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150$ = 4.8×10^{-5} Wb change = 2.52×10^{-4} Wb	1	[2]
		(ii)	e.m.f. = $(2.52 \times 10^{-4})/0.30$ = $8.4 \times 10^{-4} \text{ V}$	1	[2]
	(d)	eithe or	at constant speed, e.m.f/flux linkage decreases as x increases	1 1 (1) (1) (1)	[3]

Q21.

	5	(a)	into (plane of) paper/downwards	1	[1]
		(b)	(i)	the <u>centripetal force</u> = mv^2/r $mv^2Ir = Bqv \underline{hence} q/m = v/r B$ (some algebra essential)	1	[2]
			(ii)	$q/m = (8.2 \times 10^6)/(23 \times 10^{-2} \times 0.74)$ = 4.82×10^7 C kg ⁻¹	1 1	[2]
		(c)	(i)	mass = $(1.6 \times 10^{-19})/(4.82 \times 10^7 \times 1.66 \times 10^{-27})$ = 2u	1 1	[2]
			(ii)	proton + neutron	1	[1]
Q22						
5	(a)	1/2	\times 9.11	qV(or some verbal explanation)	>	[2]
	(b)(i)) wi	ithin fie	d: circular arc		
		be	eyond fi	ield: straight, with no 'kink' on leaving field		[3]
	(ii	2. (m	eflection nagnetion	M1 n is larger A1 c) force is larger M1 n is larger A1		[2] [2]
Q23.	•					
6	(a)	ò	n straig	cally equal to) force per unit longth M1 ght conductor carrying unit current A1 to the field A1		[3]
	(b)			ugh coil = <i>BA</i> sin <i>B</i> B1 age = <i>BAN</i> sin <i>B</i> B1		[2]
	(c)(d) e.m.f. proportional to M1 change of Mix (linkage) A1		[2]
	(ii) g		two square sections in correct positions, zero elsewhere B1 pulses in opposite directions B1 amplitude of second about twice amplitude of first B1		[3]

Q24.

5	(a)	(i)	(induced) e.m.f proportional/equal to rate of change of flux (linkage) (allow 'induced voltage, induced p.d.) flux is cust as the disc moves hence inducing an e.m.f	N	31 //1 AO	[2]
		(ii)	field in disc is not uniform/rate of cutting not same/speed of disc not same (over whole disc) so different e.m.f.'s in different parts of disc lead to eddy currents	N	31 41 A0	[2]
	(b)	enei	y currents dissipate thermal energy in disc rgy derived from oscillation of disc rgy of disc depends on amplitude of oscillations	E	31 31 31	[3]
Q2	5.					
6	(a)	(i)	$BI\sin\theta$	B1	[1]	
		(ii)	(downwards) into (the plane of) the paper	B1	[1]	
	(b)	(i)	magnetic field (due to current) in one loop OR each loop acts as a coil	B1 M1	[4]	
		(ii)	B = $2 \times 10^{-7} I/0.75 \times 10^{-2}$ (= $2.67 \times 10^{-5} I$) force = $0.26 \times 10^{-3} \times 9.81$ (= 2.55×10^{-3} N) F = BIL $2.55 \times 10^{-3} = 2.67 \times 10^{-5} \times I^{2} \times 2\pi \times 4.7 \times 10^{-2}$ I = 18 A	C1 C1	[4]	
Q2	6.					
8	(a)	a f	gion (of space) / area where orce is experienced by rent-carrying conductor / moving charge / permanent magnet	B1 M1 A1	[3]
	(b)) (i)	electric	B1		1]
		(ii)	gravitational	B1	[1]
		(iii)	magnetic	B1	[1]

Q27.

(iv) magnetic

B1

[1]

ь	(a)	with	rect direction dear	A1	[3]
	(b)	(i)	correct position to left of wire	B1	[1]
		(ii)	$B = (4\pi \times 10^{-7} \times 1.7) / (2\pi \times 1.9 \times 10^{-2})$ = 1.8 \times 10 ⁻⁵ T	C1 A1	[2]
	(c)		ance ∞ current rent = (2.8 / 1.9) × 1.7 = 2.5 A		[2] l: 8]
Q28	•			oll	
5	(a)	(i)	concentric circles, anticlockwise(minimum 3 circles)separation of lines increases with distance from wire	M1 A1	[2]
		14. 41	direction from Y towards X		[1]
	(b)	(i)	flux density at wire Y = $(4\pi \times 10^{-7} \times 5.0) / (2\pi \times 2.5 \times 10^{2})$	C1	[4]
		(ii)	either force depends on product of the currents in the two wires so equal	A1 (M1)	
				[Tot	tal: 9]
Q29	•		William William		

6	(a)	(i)	e.m.f. induced proportional / equal to		[2]
		(ii)	e.m.f. (induced) only when flux is changing / cut direct current gives constant flux		[2]
	(b)	(i)	(induced) e.m.f. / current acts in such a direction to produce effects		[2]
		(ii)	(induced) current in <u>secondary</u> produces magnetic field	M1	[2]
	(c)	(i)	alternating means that voltage / current is easy to change	B1	[1]
		(ii)	high voltage means less power / energy loss (during transmission)	B1	[1]
			[То	otal:	10]
Q30.					
5	(a)	field into (the plane of) the paper	B1	[1]
	(force due to magnetic field <u>provides</u> the centripetal force $mv^{2} / r = Bqv$ $B = (20 \times 1.66 \times 10^{-27} \times 1.40 \times 10^{5}) / (1.6 \times 10^{-19} \times 6.4 \times 10^{-2})$	B1 C1 B1	

(c) (i) semicircle with diameter greater than 12.8 cm

B1 [1]

A₀

[3]

(ii) new flux density =
$$\frac{22}{20} \times 0.454$$

B = 0.499 T

= 0.454 T

A1 [2]

Q31.

5 (a) magnetic flux =
$$BA$$

= $89 \times 10^{-3} \times 5.0 \times 10^{-2} \times 2.4 \times 10^{-2}$
= 1.07×10^{-4} Wb C1 A1 [2]

(b) (i) e.m.f. =
$$\Delta \phi / \Delta t$$
 C1
(for $\Delta \phi$ = 1.07 × 10⁻⁴ Wb), Δt = 2.4 × 10⁻² / 1.8 = 1.33 × 10⁻² s C1
e.m.f. = $(1.07 \times 10^{-4}) / (1.33 \times 10^{-2})$
= 8.0×10^{-3} V A1 [3]

(ii) current =
$$8.0 \times 10^{-3} / 0.12$$
 M1 $\approx 70 \text{ mA}$ A0 [1]

(c) force on wire =
$$BIL$$

= $89 \times 10^{-3} \times 70 \times 10^{-3} \times 5.0 \times 10^{-2}$ C1
 $\approx 3 \times 10^{-4}$ (N) M1
suitable comment e.g. this force is too / very small (to be felt) A1 [3]

www.youtube.com/megalecture

Q32.

Q35.

	7		force du Eq = Bq v = E/B	ue to <i>E</i> -field is <u>equal and opposite</u> to force due to <i>B</i> -field	B1 B1 B1	[3]
		1	either or or so no de	charge and mass are not involved in the equation in (a) $F_{\rm E}$ and $F_{\rm B}$ are both doubled E,B and v do not change eviation	M1 A1	[2]
Q	33.					
	(b) (i)		ced) e.m.f. is proportional to of change/cutting of (magnetic) flux (linkage)	4	M1 A1 [2]
		(ii)	as ma	rent is induced in the coil agnet moves in coil nt in resistor gives rise to a heating effect nal energy is derived from energy of oscillation of the magnet	A N	M1 A1 M1 A1 [4]
Q3	84.			$sin\theta$) or $Bqv(cos\theta)$		
;	5 ((a) (i) Bqv(sinθ) or Bqv(cosθ)	B1	[1]
		(ii) qE		В1	[1]
	(pe opposite in direction to F_E etic field into plane of paper	B1 B1	[2]

•	(a)	field	d normal to (straight) conductor carrying current of 1 A	M1 A1	[3]
	(b)	(i)	force on particle always normal to direction of motion (and speed of particle is constant)	M1	
				A1	[2]
		(ii)		M1 A0	[1]
	(c)	(i)		M1 A1	[2]
		(ii)		M1 A1	[2]
				M1 A1	[2]

Q36.

6	(a)	(i)	particle must be moving with component of velocity normal to magnetic field	M1 A1	[2]
		(ii)	$F = Bqv \sin \theta$ $q, v \text{ and } \theta \text{ explained}$	M1 A1	[2]
	(b)	(i)	face BCGF shaded	A1	[1]
		(ii)	between face BCGF and face ADHE	A1	[1]
	(c)		ential difference gives rise to an <u>electric</u> field	M1	
			her $F_E = qE$ (no need to explain symbols) electric field gives rise to force (on an electron)	A1	[2]

Q37.

7	. ,	induced e.m.f./current produces effects/acts in such a direction/fends to oppose the change causing it	M1 A1	[2]
	(b)	(i) 1. to reduce flux losses/increase flux linkage/easily magnetised and demagnetised	B1	[1]
		2. to reduce energy / heat losses (do not allow 'to prevent energy losses') caused by eddy currents (allow 1 mark for 'reduce eddy currents')	M1 A1	[2]
	(ii) alternating current/voltage gives rise to (changing) flux in core flux links the secondary coil (by Faraday's law) changing flux induces e.m.f. (in secondary coil)	B1 B1 M1	[4]

Q38.

4	(a)	force on proton is normal to velocity and field provides centripetal force (for circular motion)	M1 A1	[2]
	(b)	magnetic force = Bqv centripetal force = $mr\omega^2$ or mv^2/r $v = r\omega$	B1 B1 B1	
		$Bqv = Bqr\omega = mr\omega^2$ $\omega = Bq/m$	A1	[4]

Q3

Q39.						
5	(a)	wh θ or $\phi =$	ther ϕ = $BA \sin \theta$ lere A is the area (through which flux passes) is the angle between B and (plane of) A lere A is area normal to B	cos	M1 A1 (M1) (A1)	[2]
	(b)	gra sha	aph: V _H constant and non zero between the poles and zero outside arp increase/decrease at ends of magnet	•	M1 A1	[2]
	(c)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)		M1 A1	
		(ii)	short pulse on entering and on leaving region between poles pulses approximately the same shape but opposite polarities e.m.f. zero between poles and outside		M1 A1 A1	
Q40.						
5	(a)	(i)	field shown as right to left	B1	[1]	1
		(ii)	lines are more spaced out at ends	B1	[1]	1
	(b)	eith	l voltage depends on angle ner between rield and plane of probe	M1		
			maximum when field normal to plane of probe zero when field parallel to plane of probe	A1	[2]	I
	(c)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) (allow rate of cutting of flux)	M1 A1	[2]	I.
		(ii)	e.g. move coil towards/away from solenoid rotate coil vary current in solenoid insert iron core into solenoid			

www.youtube.com/megalecture

(any three sensible suggestions, 1 each)

[3]

Q41.

(a) force due to magnetic field is constant **B1** force is (always) normal to direction of motion this force provides the centripetal force A1 [3] (b) $mv^2/r = Bqv$ M1 hence q / m = v / BrA₀ [1] (c) (i) $q/m = (2.0 \times 10^7)/(2.5 \times 10^{-3} \times 4.5 \times 10^{-2})$ C₁ $= 1.8 \times 10^{11} \,\mathrm{C \, kg^{-1}}$ A1 [2] (ii) sketch: curved path, constant radius, in direction towards bottom of M1 tangent to curved path on entering and on leaving the field A1 [2]

Q42.

(a) (i) region (of space) either where a moving charge (may) experience a force around a magnet where another magnet experiences a force B1 [1] (ii) $(\Phi =) BA \sin \theta$ [1] A1 (b) (i) plane of frame is always parallel to $B_{\mbox{\tiny V}}/\mbox{flux}$ linkage always zero **B**1 [1] (ii) $\Delta \Phi = 1.8 \times 10^{-5} \times 52 \times 10^{-2} \times 95 \times 10^{-2}$ C₁ $= 8.9 \times 10^{-6} \text{ Wb}$ [2] A1 (c) (i) (induced) e.m.f. proportional to rate of M1 change of (magnetic) flux (linkage) A1 [2] (allow rate of cutting of flux) (ii) e.m.f. = $(8.9 \times 10^{-6}) / 0.30$ $= 3.0 \times 10^{-5} \text{ V}$ A1 [1] (iii) This question part was removed from the assessment. All candidates were awarded 1 mark. **B1** [1]

Q43.

6	(a)	or	accelerated motion/force normal to plate/in direction field not circular	B1 A0	[1]
	(b)	(i)	direction of force due to magnetic field opposite to that due to electric field magnetic field into plane of page	B1 B1	[2]
		(ii)	force due to magnetic field = force due to electric field $Bqv = qE$	B1	
			$B = E / v$ = $(2.8 \times 10^4) / (4.7 \times 10^5)$ = $6.0 \times 10^{-2} \text{ T}$	C1 A1	[3]
	(c)	(i)	no change/not deviated	В1	[1]
		(ii)	deviated upwards	B1	[1]
		(iii)	no change/not deviated	B1	[1]
Q44					
7	(a)	gra	ph: V_H increases from zero when current switched on V_H then non-zero constant V_H returns to zero when current switched off	B1 B1 B1	[3]
	(b)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)	M1 A1	[2]
		(ii)	pulse as current is being switched on zero e.m.f. when current in coil pulse in opposite direction when switching off	B1 B1 B1	[3]
Q45	•		The state of the s		
5	(a		ally curve with decreasing gradient exceptable value near $x = 0$ and does not reach zero	M1 A1	[2]
			graph line less than 4.0 cm do not allow A1 mark) o credit if graph line has positive and negative values of V _H)		
	(t	all	aph: from 0 to 2 <i>T</i> , two cycles of a sinusoidal wave l peaks above 3.5 mV eaks at 4.95/5.0 mV (allow 4.8 mV to 5.2 mV)	M1 C1 A1	[3]
	(0	c) e.	m.f. induced in coil when magnetic field/flux is changing/cutting	B1	
				B1	[2]

Q46.

6 (a) electric and magnetic fields normal to each other

B1

either charged particle enters region normal to both fields or correct B direction w.r.t. E for zero deflection for no deflection, v = E/B

B1 B1 [3]

(no credit if magnetic field region clearly not overlapping with electric field region)

© Cambridge International Examinations 2014

www.maxpapers.com

Page 4	Mark Scheme Syllab	us	Paper	
	GCE A LEVEL – May/June 2014 9702	2	42	
(b) (i)	m = Bqr/v		C1	
() ()	= $(640 \times 10^{-3} \times 1.6 \times 10^{-19} \times 6.2 \times 10^{-2})/(9.6 \times 10^{4})$		C1	
	$= 6.61 \times 10^{-26} \text{kg}$		C1	
	= $(6.61 \times 10^{-26})/(1.66 \times 10^{-27})u$ = $40 u$		A1	[4]
(ii)	$q/m \propto 1/r$ or m constant and $q \propto 1/r$		B1	
	q/m for A is twice that for B	D)	B1	
	ions in path A have (same mass but) twice the charge (of ions in path	1B)	B1	[3]

Q47.

6 (a)
$$F = BIL \sin \theta$$
 C1
= $2.6 \times 10^{-3} \times 5.4 \times 4.7 \times 10^{-2} \times \sin 34^{\circ}$
= 3.69×10^{-4} N A1 [2]
(allow 1 mark for use of cos 34°)

(b) peak current =
$$1.7 \times \sqrt{2}$$
 C1 = 2.4 A

max. force =
$$2.6 \times 10^{-3} \times 2.4 \times 4.7 \times 10^{-2} \times \sin 34^{\circ}$$

= $1.64 \times 10^{-4} \,\text{N}$

variation =
$$2 \times 1.64 \times 10^{-4}$$

= 3.3×10^{-4} N A1 [3]

whith the obline

