Q1. | | 5 (a | 1) | | centripetal force = mv^2/r | B1
B1 | [3] | |-----|------|------|--------------------|---|----------------------|-----| | | (t |) | | $r_{\alpha}/r_{\beta} = (m_{\alpha}/m_{\beta}) \times (q_{\beta}/q_{\alpha})$
= $(4 \times 1.66 \times 10^{27})/(9.11 \times 10^{-31} \times 2)$
= 3.64×10^{3} | C1
A2 | [3] | | | (0 | ;) | (i) | r_{α} = (4 x 1.66 x 10 ⁻²⁷ x 1.5 x 10 ⁶)/(1.2 x 10 ⁻³ x 2 x 1.6 x 10 ⁻¹⁹)
= 25.9 m | A2 | | | | | | (ii) | $r_{\beta} = 25.9 \times 3.64 \times 10^3 = 7.13 \times 10^{-3} \text{ m}$ | A1 | [3] | | | (0 | i) | (i) | deflected upwardsbut close to original direction | B1 | | | | | | (ii) | opposite direction to α-particle and 'through side' | B1 | [3] | | Q2. | | | | | | | | 6 | (a) | (i) | | field in core must be changing at an e.m.f./current is induced in the secondary | M1
A1 | [2] | | | | (ii) | | er = VI
<u>ut</u> power is constant so if V_S increases, I_S decreases | M1
A1 | [2] | | | (b) | (i) | same | e shape and phase as I _P graph | B1 | [1] | | | | (ii) | | e frequency
ect phase w.r.t. Fig. 6.3 | M1
A1 | [2] | | | | (iii |) ½π <u>r</u> | ad or 90° | B1 | [1] | | Q3. | | | | · him | | | | 6 | (a) | (i) | arrow | Bid correct direction (down the page) | В1 | | | | | (ii) | arrow | F in correct direction (towards Y) | B1 | [2] | | | (b) | (i) | | two bodies interact, force on one body is equal but opposite in on to force on the other body. | В1 | [1] | | | | (ii) | directi | on opposite to that in (a)(ii) | B1 | [1] | | | (c) | mer | ntion of
e betw | reasonable values of <i>I</i> and <i>d</i> i expression $F = BIL$ een wires is small to weight of wire | B1
B1
M1
A1 | [4] | Q4. | 8 | (a) | arro | ow labelled E pointing down the page | B1 | [1] | |---|-----|------|--|----------------|-----| | | (b) | (i) | Bqv = qE forces are independent of mass and charge 'cancels' so no deviation | M1
M1
A1 | [3] | | | | (ii) | magnetic force > electric force so deflects 'downwards' | M1
M1
A1 | [3] | Q5. | 6 | (a) parallel (to the field) | B1 | [1] | |---|-----------------------------|----|-----| | | | | | (b) (i) torque = $$F \times d$$ $2.1 \times 10^{-3} = F \times 2.8 \times 10^{-2}$ C1 $F = 0.075 \text{ N}$ A1 [2] (use of 4.5 cm scores no marks) (ii) zero A1 [1] (c) $$F = BILN(\sin\theta)$$ C1 $0.075 = B \times 0.170 \times 4.5 \times 10^{-2} \times 140$ M1 $B = 7.0 \times 10^{-2} \text{ T} = 70 \text{ mT}$ A0 [2] (ii) change in flux linkage = $$BAN$$ = $0.070 \times 4.5 \times 10^{-2} \times 2.8 \times 10^{-2} \times 140$ C1 = 0.0123 Wb turns induced e.m.f = $0.0123 / 0.14$ C1 = 88 mV A1 [3] (Note: This is a simplified treatment. A full treatment would involve the averaging of B $\cos\theta$ leading to a $\sqrt{2}$ factor) Q6. | 6 | (a) | unit of magnetic flux density / magnetic field strength (uniform) field normal to wire carrying current of 1 A giving force (per unit length) of 1 N m ⁻¹ | | | | | | | |-----|------|--|---|----------------|-----|--|--|--| | | (b) | (i) | force on magnet / balance is downwards (so by Newton's third law) force on wire is upwards pole P is a north pole | B1
M1
A1 | [3] | | | | | | | (ii) | F = BIL and $F = mg$ (g missing, then 0/3 in (ii))
2.3 × 10 ⁻³ × 9.8 = B × 2.6 × 4.4 × 10 ⁻² (g = 10, loses this mark)
B = 0.20 T | C1
C1
A1 | [3] | | | | | | (c) | | ding for maximum current = $2.3 \times \sqrt{2}$
I variation = $2 \times 2.3 \times \sqrt{2}$
= 6.5 g | C1
A1 | [2] | | | | | Q7. | | | | | | | | | | 7 | | | | | | | | | | Q8. | | | | | | | | | | | 5 (a | a) (i) | $V_{\rm H}$ depends on angle between (plant) of) probe and B -field either $V_{\rm H}$ max when plane and B field are normal to each other or $V_{\rm H}$ zero when plane and B field are parallel | B1 | | | | | | | | (ii) | V_H depends on sine of angle between plane and B-field calculates V_Hr at reast three times to 1 of constant so yelid or approx constant so yelid | B1
M1 | [2] | | | | | | | | to 1 s.f. constant so valid or approx constant so valid or to 2 s.f., not constant so invalid | A1 | [2] | | | | | | | | 2 straight time passes through origin | B1 | [1] | | | | | | (t | o) (i) | e.m.f. induced is proportional / equal to rate of change of (magnetic) flux (linkage) constant field in coil / flux (linkage) of coil does not change | M1
A1
B1 | [3] | | | | | | | (ii) | e.g. vary current (in wire) / switch current on or off / use a.c. current rotate coil move coil towards / away from wire (1 mark each, max 3) | В3 | [3] | | | | Q9. | 7 | (a) | arr | ow pointing up the page | B1 | [1] | |-----|-----|-------|---|----------------|-----| | | (b) |) (i) | Eq = Bqv
$v = (12 \times 10^3) / (930 \times 10^{-6})$
$= 1.3 \times 10^7 \text{ m s}^{-1}$ | C1
A1 | [3] | | | | (ii) | $Bqv = mv^2 / r$
$q/m = (1.3 \times 10^7) / (7.9 \times 10^{-2} \times 930 \times 10^{-6})$
= 1.8×10^{11} C kg ⁻¹ | C1
C1
A1 | [3] | | Q10 | | | | | | | 6 | (a) | (i) | straight line with positive gradient through origin | M1
A1 | [2] | | | | (ii) | maximum force shown at θ = 90° zero force shown at θ = 0° reasonable curve with F about ½ max at 30° | M1
M1
A1 | [3] | | | (b) | (i) | force on electron due to magnetic field force on electron normal to magnetic field and direction of electron | B1
B1 | [2] | | | | (ii) | quote / mention of (Fleming's) left hand rule electron moves towards QR | M1
A1 | [2] | | Q11 | | | | | | | 5 | (a) | | on (of space) where there is a force er on / produced by magnetic pole on / produced by current carrying conductor / moving charge | M1
A1 | [2] | | | (b) | (i) | force on particle is (always) normal to velocity / direction of travel speed of particle is constant | B1
B1 | [2] | | | | (ii) | magnetic force provides the centripetal force $mv^2 / r = Bqv$
r = mv / Bq | B1
M1
A0 | [2] | | | (c) | (i) | direction from 'bottom to top' of diagram | B1 | [1] | | | | (ii) | radius proportional to momentum ratio = 5.7 / 7.4 | C1 | | | | | | = 0.77 (answer must be consistent with direction given in (c)(i)) | A1 | [2] | Q12. | 5 | (a) | (i) | (induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) / rate of flux cutting | M1
A1 | [2] | |-------------|------------|------|--|----------------|-------------------| | | | (ii) | moving magnet causes change of flux linkage speed of magnet varies so varying rate of change of flux magnet changes direction of motion (so current changes direction) | B1
B1
B1 | [1]
[1]
[1] | | | (b) | | iod = 0.75s
quency = 1.33Hz | C1
A1 | [2] | | | (c) | gra | ph: smooth correctly shaped curve with peak at f_0 A never zero | M1
A1 | [2] | | | (d) | (i) | resonance | B1 | [1] | | | | (ii) | e.g. quartz crystal for timing / production of ultrasound | A1 | [1] | | Q13 | 3. | | | , | | | 7 | 7 (| a) s | ketch: concentric circles (minimum of 3 circles) separation increasing with distance from wire correct direction | M1
A1
B1 | [3] | | | (| b) (| i) arrow direction from wire B towards wire A | B1 | [1] | | | | (i | i) either reference to Newton's third law or force on each wire proportional or product of the two currents so forces are equal | M1
A1 | [2] | | | (| ٧ | orce <u>always</u> towards wire A/ <u>always</u> in same direction aries from zero (to a maximum value) (1) ariation is sinusoidal / sin (1) | B1 | | | Q1 4 | I . | (| ariation is sinusoidal / sin (1) at) twice frequency of current (1) any two, one each) | B2 | [3] | www.youtube.com/megalecture | 5 | (a) | cur | (long) straight conductor carrying current of 1A M1 current/wire normal to magnetic field M1 (for flux density 1T,) force per unit length is 1Nm ⁻¹ A1 | | | [3] | |-----|-----|--|--|----------------|----------|-----| | | (b) | (i) | (originally) downward force on magnet (due to current) by Newton's third law (allow "N3") upward force on wire | B1
M1
A1 | | [3] | | | | (ii) | F = BIL
2.4 × 10 ⁻³ × 9.8 = B × 5.6 × 6.4 × 10 ⁻²
B = 0.066 T (need 2 SF)
(g missing scores 0/2, but g = 10 leading to 0.067T scores 1/2) | C1
A1 | | [2] | | | (c) | | w reading is 2.4√2g
her changes between +3.4g and –3.4g
total change is 6.8g | C1
A1 | | [2] | | Q15 | • | | | | | | | 5 | (a) | (a) (uniform magnetic) flux normal to long (straight) wire carrying a current of 1 A
(creates) force per unit length of 1 N m⁻¹ | | | | [2] | | | (b) | (i) | flux density = $4\pi \times 10^{-7} \times 1.5 \times 10^{3} \times 3.5$
= 6.6×10^{-3} T | | C1
A1 | [2] | | | | (ii) | flux linkage = $6.6 \times 10^{-3} \times 28 \times 10^{-4} \times 160$
= 3.0×10^{-3} Wb | | C1
A1 | [2] | | | (c) | (i) | (induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) | | M1
A1 | [2] | | | | (ii) | e.m.f. = $(2 \times 3.0 \times 10^{-3}) / 0.80$
= 7.4×10^{-3} V | | C1
A1 | [2] | Q16. 5 (a) (uniform magnetic) flux normal to long (straight) wire carrying a current of 1 A | | (cre | eates) force per unit length of 1 N m ⁻¹ | A1 | [2] | |-------------|-------------|--|----------------|-----| | (b |) (i) | sketch: concentric circles increasing separation (must show more than 3 circles) correct direction (anticlockwise, looking down) | M1
A1
B1 | [3] | | | (ii) | B = $(4\pi \times 10^{-7} \times 6.3) / (2\pi \times 4.5 \times 10^{-2})$
= 2.8×10^{-5} T | C1
A1 | [2] | | | (iii) | $F = BIL (\sin \theta)$
= 2.8 × 10 ⁻⁵ × 9.3 × 1
$F/L = 2.6 \times 10^{-4} \text{ N m}^{-1}$ | C1 | [0] | | | | $F/L = 2.6 \times 10^{-6} \text{ Nm}^{-6}$ | A1 | [2] | | (c) | rea | be per unit length depends on product I_XI_Y / by Newton's third law / action and ction are equal and opposite same for both | M1
A1 | [2] | | Q17. | | | | | | 6. (a) |) | e.g. E-field, force independent of speed, B-field, force ∞ speed E-field, force along field direction, B-field, force normal etc | | [4] | | (b) | (i)
(ii) | | | [4] | | (c) | (i)
(ii) | | C1 | [3] | | (d |) | gravitational force $<< F_B$ or F_E | B1 . | [1] | | Q18. | | | | | | 7 (a) | (i) | the wire cuts magnetic field | | | | | (ii) | | 31 | [4] | | (b |) | $x_0 = 1.5 \text{ mV}$ (allow ±0.1) | C1 | | | | | $x = 1.5 \sin 2090t$ | | [4] | # Q19. | 5 | (a) | | field producing force of 1.0 N m ⁻¹ on wire <i>OR B = F/IL</i> sin 2M1 carrying current of 1.0 A normal to field <i>OR</i> symbols explained A1 | | [2] | |------|-----|-------------|--|-----------------------------|-----| | | (b) | (i) | $\phi = BA$
= 1.8 x 10 ⁻⁴ x 0.60 x 0.85 | | [2] | | | | (ii)1 | $\Delta \phi$ = 9.18 x 10 ⁻⁵ Wb | | | | | | (ii)2 | e = $(N\Delta\phi)/\Delta t$
= $(9.18 \times 10^{-5})/0.20$ | | [3] | | | | (iii) | there is an e.m.f. and a complete circuit OR no resultant e.m.f. from other three sides OR no e.m.f. in AB so yes | | [1] | | Q20. | | | | | | | 4 | (a) | (i) | 50 mT | 1 | | | | | (ii) | flux linkage = BAN
= $50 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150 = 3.0 \times 10^{-4} \text{ Wb}$ | 1 | [3] | | | | | (allow 49 mT \rightarrow 2.94 x 10 ⁻⁴ Wb or 51 mT \rightarrow 3.06 x 10 ⁻⁴ Wb) | | | | | (b) | propo | i./induced voltage (do not allow current) ortional/equal to of change/cutting of flux (linkage) | 1 | [2] | | | (c) | (i) | new flux linkage = $8.0 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150$
= 4.8×10^{-5} Wb
change = 2.52×10^{-4} Wb | 1 | [2] | | | | (ii) | e.m.f. = $(2.52 \times 10^{-4})/0.30$
= $8.4 \times 10^{-4} \text{ V}$ | 1 | [2] | | | (d) | eithe
or | at constant speed, e.m.f/flux linkage decreases as x increases | 1
1
(1)
(1)
(1) | [3] | Q21. | | 5 | (a) | into (| plane of) paper/downwards | 1 | [1] | |------|--------|--------------|------------------------|--|-------------|------------| | | | (b) | (i) | the <u>centripetal force</u> = mv^2/r
$mv^2Ir = Bqv \underline{hence} q/m = v/r B$ (some algebra essential) | 1 | [2] | | | | | (ii) | $q/m = (8.2 \times 10^6)/(23 \times 10^{-2} \times 0.74)$
= 4.82×10^7 C kg ⁻¹ | 1
1 | [2] | | | | (c) | (i) | mass = $(1.6 \times 10^{-19})/(4.82 \times 10^7 \times 1.66 \times 10^{-27})$
= 2u | 1
1 | [2] | | | | | (ii) | proton + neutron | 1 | [1] | | Q22 | | | | | | | | 5 | (a) | 1/2 | \times 9.11 | qV(or some verbal explanation) | > | [2] | | | (b)(i) |) wi | ithin fie | d: circular arc | | | | | | be | eyond fi | ield: straight, with no 'kink' on leaving field | | [3] | | | (ii | 2. (m | eflection
nagnetion | M1 n is larger A1 c) force is larger M1 n is larger A1 | | [2]
[2] | | Q23. | • | | | | | | | 6 | (a) | ò | n straig | cally equal to) force per unit longth M1 ght conductor carrying unit current A1 to the field A1 | | [3] | | | (b) | | | ugh coil = <i>BA</i> sin <i>B</i> B1 age = <i>BAN</i> sin <i>B</i> B1 | | [2] | | | (c)(| | | d) e.m.f. proportional to M1
change of Mix (linkage) A1 | | [2] | | | (| ii) g | | two square sections in correct positions, zero elsewhere B1 pulses in opposite directions B1 amplitude of second about twice amplitude of first B1 | | [3] | Q24. | 5 | (a) | (i) | (induced) e.m.f proportional/equal to rate of change of flux (linkage) (allow 'induced voltage, induced p.d.) flux is cust as the disc moves hence inducing an e.m.f | N | 31
//1
AO | [2] | |----|-----|-------|---|----------------|-----------------|-----| | | | (ii) | field in disc is not uniform/rate of cutting not same/speed of disc not same (over whole disc) so different e.m.f.'s in different parts of disc lead to eddy currents | N | 31
41
A0 | [2] | | | (b) | enei | y currents dissipate thermal energy in disc
rgy derived from oscillation of disc
rgy of disc depends on amplitude of oscillations | E | 31
31
31 | [3] | | Q2 | 5. | | | | | | | 6 | (a) | (i) | $BI\sin\theta$ | B1 | [1] | | | | | (ii) | (downwards) into (the plane of) the paper | B1 | [1] | | | | (b) | (i) | magnetic field (due to current) in one loop OR each loop acts as a coil | B1
M1 | [4] | | | | | (ii) | B = $2 \times 10^{-7} I/0.75 \times 10^{-2}$ (= $2.67 \times 10^{-5} I$)
force = $0.26 \times 10^{-3} \times 9.81$ (= 2.55×10^{-3} N)
F = BIL
$2.55 \times 10^{-3} = 2.67 \times 10^{-5} \times I^{2} \times 2\pi \times 4.7 \times 10^{-2}$
I = 18 A | C1
C1 | [4] | | | Q2 | 6. | | | | | | | 8 | (a) | a f | gion (of space) / area where
orce is experienced by
rent-carrying conductor / moving charge / permanent magnet | B1
M1
A1 | [| 3] | | | (b) |) (i) | electric | B1 | | 1] | | | | (ii) | gravitational | B1 | [| 1] | | | | (iii) | magnetic | B1 | [| 1] | Q27. (iv) magnetic **B1** [1] | ь | (a) | with | rect direction dear | A1 | [3] | |-----|-----|--------|--|------------|----------------------| | | (b) | (i) | correct position to left of wire | B1 | [1] | | | | (ii) | $B = (4\pi \times 10^{-7} \times 1.7) / (2\pi \times 1.9 \times 10^{-2})$
= 1.8 \times 10 ⁻⁵ T | C1
A1 | [2] | | | (c) | | ance ∞ current
rent = (2.8 / 1.9) × 1.7
= 2.5 A | | [2]
l: 8] | | Q28 | • | | | oll | | | 5 | (a) | (i) | concentric circles, anticlockwise(minimum 3 circles)separation of lines increases with distance from wire | M1 A1 | [2] | | | | 14. 41 | direction from Y towards X | | [1] | | | (b) | (i) | flux density at wire Y = $(4\pi \times 10^{-7} \times 5.0) / (2\pi \times 2.5 \times 10^{2})$ | C1 | [4] | | | | (ii) | either force depends on product of the currents in the two wires so equal | A1
(M1) | | | | | | | [Tot | tal: 9] | | Q29 | • | | William William | | | | 6 | (a) | (i) | e.m.f. induced proportional / equal to | | [2] | |------|-----|------|---|----------------|-----| | | | (ii) | e.m.f. (induced) only when flux is changing / cut direct current gives constant flux | | [2] | | | (b) | (i) | (induced) e.m.f. / current acts in such a direction to produce effects | | [2] | | | | (ii) | (induced) current in <u>secondary</u> produces magnetic field | M1 | [2] | | | (c) | (i) | alternating means that voltage / current is easy to change | B1 | [1] | | | | (ii) | high voltage means less power / energy loss (during transmission) | B1 | [1] | | | | | [То | otal: | 10] | | Q30. | | | | | | | 5 | (| a) | field into (the plane of) the paper | B1 | [1] | | | (| | force due to magnetic field <u>provides</u> the centripetal force $mv^{2} / r = Bqv$ $B = (20 \times 1.66 \times 10^{-27} \times 1.40 \times 10^{5}) / (1.6 \times 10^{-19} \times 6.4 \times 10^{-2})$ | B1
C1
B1 | | (c) (i) semicircle with diameter greater than 12.8 cm B1 [1] A₀ [3] (ii) new flux density = $$\frac{22}{20} \times 0.454$$ B = 0.499 T = 0.454 T A1 [2] Q31. 5 (a) magnetic flux = $$BA$$ = $89 \times 10^{-3} \times 5.0 \times 10^{-2} \times 2.4 \times 10^{-2}$ = 1.07×10^{-4} Wb C1 A1 [2] (b) (i) e.m.f. = $$\Delta \phi / \Delta t$$ C1 (for $\Delta \phi$ = 1.07 × 10⁻⁴ Wb), Δt = 2.4 × 10⁻² / 1.8 = 1.33 × 10⁻² s C1 e.m.f. = $(1.07 \times 10^{-4}) / (1.33 \times 10^{-2})$ = 8.0×10^{-3} V A1 [3] (ii) current = $$8.0 \times 10^{-3} / 0.12$$ M1 $\approx 70 \text{ mA}$ A0 [1] (c) force on wire = $$BIL$$ = $89 \times 10^{-3} \times 70 \times 10^{-3} \times 5.0 \times 10^{-2}$ C1 $\approx 3 \times 10^{-4}$ (N) M1 suitable comment e.g. this force is too / very small (to be felt) A1 [3] # www.youtube.com/megalecture # Q32. Q35. | | 7 | | force du
Eq = Bq
v = E/B | ue to <i>E</i> -field is <u>equal and opposite</u> to force due to <i>B</i> -field | B1
B1
B1 | [3] | |----|-----|--------|--------------------------------|--|----------------|--------------------------| | | | 1 | either
or
or
so no de | charge and mass are not involved in the equation in (a) $F_{\rm E}$ and $F_{\rm B}$ are both doubled E,B and v do not change eviation | M1
A1 | [2] | | Q | 33. | | | | | | | | (b |) (i) | | ced) e.m.f. is proportional to of change/cutting of (magnetic) flux (linkage) | 4 | M1
A1 [2] | | | | (ii) | as ma | rent is induced in the coil agnet moves in coil nt in resistor gives rise to a heating effect nal energy is derived from energy of oscillation of the magnet | A
N | M1
A1
M1
A1 [4] | | Q3 | 84. | | | $sin\theta$) or $Bqv(cos\theta)$ | | | | ; | 5 (| (a) (i |) Bqv(| sinθ) or Bqv(cosθ) | B1 | [1] | | | | (ii |) qE | | В1 | [1] | | | (| | | pe opposite in direction to F_E etic field into plane of paper | B1
B1 | [2] | | • | (a) | field | d normal to (straight) conductor carrying current of 1 A | M1
A1 | [3] | |---|-----|-------|--|----------|-----| | | (b) | (i) | force on particle always normal to direction of motion (and speed of particle is constant) | M1 | | | | | | | A1 | [2] | | | | (ii) | | M1
A0 | [1] | | | (c) | (i) | | M1
A1 | [2] | | | | (ii) | | M1
A1 | [2] | | | | | | M1
A1 | [2] | | | | | | | | ## Q36. | 6 | (a) | (i) | particle must be moving with component of velocity normal to magnetic field | M1
A1 | [2] | |---|-----|------|--|----------|-----| | | | (ii) | $F = Bqv \sin \theta$
$q, v \text{ and } \theta \text{ explained}$ | M1
A1 | [2] | | | (b) | (i) | face BCGF shaded | A1 | [1] | | | | (ii) | between face BCGF and face ADHE | A1 | [1] | | | (c) | | ential difference gives rise to an <u>electric</u> field | M1 | | | | | | her $F_E = qE$ (no need to explain symbols)
electric field gives rise to force (on an electron) | A1 | [2] | ### Q37. | 7 | . , | induced e.m.f./current produces effects/acts in such a direction/fends to oppose the change causing it | M1
A1 | [2] | |---|-----|---|----------------|-----| | | (b) | (i) 1. to reduce flux losses/increase flux linkage/easily magnetised and demagnetised | B1 | [1] | | | | 2. to reduce energy / heat losses (do not allow 'to prevent energy losses') caused by eddy currents (allow 1 mark for 'reduce eddy currents') | M1
A1 | [2] | | | (| ii) alternating current/voltage gives rise to (changing) flux in core flux links the secondary coil (by Faraday's law) changing flux induces e.m.f. (in secondary coil) | B1
B1
M1 | [4] | ## Q38. | 4 | (a) | force on proton is normal to velocity and field provides centripetal force (for circular motion) | M1
A1 | [2] | |---|-----|--|----------------|-----| | | (b) | magnetic force = Bqv
centripetal force = $mr\omega^2$ or mv^2/r
$v = r\omega$ | B1
B1
B1 | | | | | $Bqv = Bqr\omega = mr\omega^2$ $\omega = Bq/m$ | A1 | [4] | ### Q3 | Q39. | | | | | | | |------|-----|-------------------------|---|----------|--------------------------|-----| | 5 | (a) | wh θ or $\phi =$ | ther ϕ = $BA \sin \theta$
lere A is the area (through which flux passes)
is the angle between B and (plane of) A
lere A is area normal to B | cos | M1
A1
(M1)
(A1) | [2] | | | (b) | gra
sha | aph: V _H constant and non zero between the poles and zero outside arp increase/decrease at ends of magnet | • | M1
A1 | [2] | | | (c) | (i) | (induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) | | M1
A1 | | | | | (ii) | short pulse on entering and on leaving region between poles pulses approximately the same shape but opposite polarities e.m.f. zero between poles and outside | | M1
A1
A1 | | | Q40. | | | | | | | | 5 | (a) | (i) | field shown as right to left | B1 | [1] | 1 | | | | (ii) | lines are more spaced out at ends | B1 | [1] | 1 | | | (b) | eith | l voltage depends on angle
ner between rield and plane of probe | M1 | | | | | | | maximum when field normal to plane of probe zero when field parallel to plane of probe | A1 | [2] | I | | | (c) | (i) | (induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) (allow rate of cutting of flux) | M1
A1 | [2] | I. | | | | (ii) | e.g. move coil towards/away from solenoid rotate coil vary current in solenoid insert iron core into solenoid | | | | # www.youtube.com/megalecture (any three sensible suggestions, 1 each) [3] #### Q41. (a) force due to magnetic field is constant **B1** force is (always) normal to direction of motion this force provides the centripetal force A1 [3] (b) $mv^2/r = Bqv$ M1 hence q / m = v / BrA₀ [1] (c) (i) $q/m = (2.0 \times 10^7)/(2.5 \times 10^{-3} \times 4.5 \times 10^{-2})$ C₁ $= 1.8 \times 10^{11} \,\mathrm{C \, kg^{-1}}$ A1 [2] (ii) sketch: curved path, constant radius, in direction towards bottom of M1 tangent to curved path on entering and on leaving the field A1 [2] #### Q42. (a) (i) region (of space) either where a moving charge (may) experience a force around a magnet where another magnet experiences a force B1 [1] (ii) $(\Phi =) BA \sin \theta$ [1] A1 (b) (i) plane of frame is always parallel to $B_{\mbox{\tiny V}}/\mbox{flux}$ linkage always zero **B**1 [1] (ii) $\Delta \Phi = 1.8 \times 10^{-5} \times 52 \times 10^{-2} \times 95 \times 10^{-2}$ C₁ $= 8.9 \times 10^{-6} \text{ Wb}$ [2] A1 (c) (i) (induced) e.m.f. proportional to rate of M1 change of (magnetic) flux (linkage) A1 [2] (allow rate of cutting of flux) (ii) e.m.f. = $(8.9 \times 10^{-6}) / 0.30$ $= 3.0 \times 10^{-5} \text{ V}$ A1 [1] (iii) This question part was removed from the assessment. All candidates were awarded 1 mark. **B1** [1] #### Q43. | 6 | (a) | or | accelerated motion/force normal to plate/in direction field not circular | B1
A0 | [1] | |-----|-----|-------|--|----------------|-----| | | (b) | (i) | direction of force due to magnetic field opposite to that due to electric field magnetic field into plane of page | B1
B1 | [2] | | | | (ii) | force due to magnetic field = force due to electric field $Bqv = qE$ | B1 | | | | | | $B = E / v$ = $(2.8 \times 10^4) / (4.7 \times 10^5)$
= $6.0 \times 10^{-2} \text{ T}$ | C1
A1 | [3] | | | (c) | (i) | no change/not deviated | В1 | [1] | | | | (ii) | deviated upwards | B1 | [1] | | | | (iii) | no change/not deviated | B1 | [1] | | Q44 | | | | | | | 7 | (a) | gra | ph: V_H increases from zero when current switched on V_H then non-zero constant V_H returns to zero when current switched off | B1
B1
B1 | [3] | | | (b) | (i) | (induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) | M1
A1 | [2] | | | | (ii) | pulse as current is being switched on zero e.m.f. when current in coil pulse in opposite direction when switching off | B1
B1
B1 | [3] | | Q45 | • | | The state of s | | | | 5 | (a | | ally curve with decreasing gradient exceptable value near $x = 0$ and does not reach zero | M1
A1 | [2] | | | | | graph line less than 4.0 cm do not allow A1 mark)
o credit if graph line has positive and negative values of V _H) | | | | | (t | all | aph: from 0 to 2 <i>T</i> , two cycles of a sinusoidal wave l peaks above 3.5 mV eaks at 4.95/5.0 mV (allow 4.8 mV to 5.2 mV) | M1
C1
A1 | [3] | | | (0 | c) e. | m.f. induced in coil when magnetic field/flux is changing/cutting | B1 | | | | | | | B1 | [2] | Q46. 6 (a) electric and magnetic fields normal to each other **B1** either charged particle enters region normal to both fields or correct B direction w.r.t. E for zero deflection for no deflection, v = E/B B1 B1 [3] (no credit if magnetic field region clearly not overlapping with electric field region) © Cambridge International Examinations 2014 www.maxpapers.com | Page 4 | Mark Scheme Syllab | us | Paper | | |---------|---|------------|-------|-----| | | GCE A LEVEL – May/June 2014 9702 | 2 | 42 | | | (b) (i) | m = Bqr/v | | C1 | | | () () | = $(640 \times 10^{-3} \times 1.6 \times 10^{-19} \times 6.2 \times 10^{-2})/(9.6 \times 10^{4})$ | | C1 | | | | $= 6.61 \times 10^{-26} \text{kg}$ | | C1 | | | | = $(6.61 \times 10^{-26})/(1.66 \times 10^{-27})u$
= $40 u$ | | A1 | [4] | | (ii) | $q/m \propto 1/r$ or m constant and $q \propto 1/r$ | | B1 | | | | q/m for A is twice that for B | D) | B1 | | | | ions in path A have (same mass but) twice the charge (of ions in path | 1B) | B1 | [3] | #### Q47. 6 (a) $$F = BIL \sin \theta$$ C1 = $2.6 \times 10^{-3} \times 5.4 \times 4.7 \times 10^{-2} \times \sin 34^{\circ}$ = 3.69×10^{-4} N A1 [2] (allow 1 mark for use of cos 34°) (b) peak current = $$1.7 \times \sqrt{2}$$ C1 = 2.4 A max. force = $$2.6 \times 10^{-3} \times 2.4 \times 4.7 \times 10^{-2} \times \sin 34^{\circ}$$ = $1.64 \times 10^{-4} \,\text{N}$ variation = $$2 \times 1.64 \times 10^{-4}$$ = 3.3×10^{-4} N A1 [3] whith the obline