Q1.

metaphase; 4 (a)

II; (allow one mark for telophase and two marks for telophase 1)

2

ref. spindles/microtubules shorten contract/pull/breakdown; centromeres divide; choromatids (pulled) apart; to opposite poles;

chromosomes unwind/AW;

nuclear membrane reforms;

ref. cytokinesis/cleavage;

4 max

independent/random assortment; (c) of homologous chromosomes; different combinations of parental chromosomes; crossing over/chiasmata; between chromatids of homologous chromosomes/non-sister chromatids; breaks up linkage groups/mixes alleles from parents; R genes ref. to non-identical/genetically different gametes;

4 max

Total: 10

Q2.

5 (a) phenotype is the feature/characteristic; results from interaction of genotype and environment on organism/ environment may alter the appearance of an organism; genotype unaffected by environment; genetic characteristics inherited/passed on to offspring/ora/represents alleles possessed;

2 max

 (b) artificial selection carried out by humans; choose organisms with useful characteristics/benefit to humans; natural selection carried out by environment; ref. survival (to breed); ref. evolution;

3 max

(c) (i) length of DNA/sequence of bases/locus on a chromosome; coding for a characteristic/protein/polypeptide/enzyme;

2

(ii) alternative form of a gene;
 determining contrasting characters/controls one form of a character;
 occupies same locus;
 ref. sequence of bases;
 ref. dominance;

3 max

Total: 10

Q3.

Question 5

(a)		
black female	X	orange male
XBXB		X°Y;
tortoiseshell female		black male
$X_B X_O$		X ^B Y;*
orange female	X	black male
x°x°		X ^B Y;
tortoiseshell female		orange male
X _B X _O		X°Y;*
(* must also have eit	her gamete	s / construction lines / punnet square).
(b)		
tortoiseshell female		
X ^B X ^O ;		
black female		
X^BX^B ;		
black male		
X^BY ;		
orange male		
X°Y;		
(phenotypes and ger	notypes mus	st be linked otherwise max 2).

(penalize once for lack of gender).

(b)	
tortois	seshell female
X _B X _O	
black	female
X ^B X ^B	•
black	male
X ^B Y;	
orang	e male
X ^o Y;	
	notypes and genotypes must be linked otherwise max 2). Ilize once for lack of gender).
(c)	X chromosome inactivated randomly early in development / AVP;
	1
	Total:

Q4.

Que	estion			Marks
2	(a)		metaphase 1 / (late) prophase 1; R early / middle	1
	(b)	1	ref. (homologous chromosomes) pairing / synapsis;	
		2	ref. to chiasma / crossing over ;	
		3	exchange of genetic material;	
		4	between non-sister chromatids / AW;	3 max
	(c)	1	breakage of linkage groups / ref. new linkage groups ;	
		2	may have different alleles;	
		3	creates new combinations of alleles;	
		4	when sister chromatids separate;	2 max
	(d)		ref. idea of random orientation at metaphase I and II / random alignment of homologous chromosomes on spindle equator;	
			subsequently leads to independent assortment;	
			2^n possible combinations when n is number of chromosome pairs ;	
			ref. to chromosome mutation qualified;	
			extra detail;	
			ref. gametes haploid (so can fuse);	
			random fusion of gametes ; N.B. 3 sets of 2/3 marks	4 max Total: 10

Q5.

5	(a)		parental genotypes; e.g. AaBb x AaBb gametes; correct use of punnett square; F1 genotypes; F1 phenotypes; (must link to genotypes) yellow and sphere ¹ / ₁₆ ;	[6]
	(b)	(i)	contract / die from, malaria ;	[1]
		(ii)	contract / die from, sickle-cell anaemia ;	[1]
	(c)		resistant to malaria; detail; more likely to survive; and reproduce;	[2 mov]
			pass on sickle-cell allele ;	[3 max]
				[Total: 11]

Q6.

7	(a)	both alleles, influence pher ref. more than 2 phenotype phenotype of heterozygote	s possible ;		ite ;		[3]
	(b)	son receives Y chromosom Y chromosome does not ca father will pass haemophilia daughter will be, a carrier / daughter may pass allele to	arry haemophilia all a allele to daughter heterozygous / X ^H)	(s); (^h ;	cept on dia	gram	[3 max]
	(c)	(i) (male) C ^B	C ^B X ^a X ^a ; x	(female)	C ^W C ^W X ^A Y	;	
		(gametes)	C ^B X ^a	C,	WX ^A or	CWY;	
			z ^w X ^a X ^a ; ne, barred)	(female, blu	C ^B C ^W X ^a Y ue, non-barr		
		accept other symbols to if male XY and female if other symbols used to	XX then mark gam		spring geno	types to ma	x 2 [5]
(ii	te w	ue colour is heterozygous / st cross ; ith non-barred female ; all offspring barred, must b		ous;			
		some offspring non-barred			3;		[3 max]
						[T	otal: 14]
Q7.							
6	(a)	allele (different) form of a gene;	A variety / version ignore refs to locu				[1]
		recessive allele which does not have homozygote / affects phenor	its effect in hetero type if dominant alle	ozygote / all ele is absent	lele which (only) has its	s effect in [1]
	(b)	gene / allele, on X chromoso	ome / sex linkage;				
		female, needs 2 RGC alleles	s / homozygous rec	essive / can	be heterozy	gous;	
		male needs 1 RGC allele;					[2 max]

(c) 1 – X^RX^r / Rr; 4 – X^RY / R / R° / R-; 6 – X'Y / r / r° / r-; 7 – X^RX^r / Rr; [4] if X and Y not used then mark to max 3

Q8.

7 (a) key; black upper case, chestnut lower case

offspring genotypes and chestnut identified;

25% / 0.25 / ¼ / 1 in 4, (probability); ignore ratios

(b)

gametes;

aaCCCCR parental genotype AaCC parental phenotype palomino / cream black; aCCR aC gametes AC aC; aaCCCR; offspring genotypes AaCC aaCC **AaCCCR** any order offspring phenotypes black chestnut black palomino / cream; order linked to genotype order

ecf can be applied to offspring genotypes and phenotypes [4]

[Total: 8]

[4]

Q9.

6 (a) change in, DNA/base sequence;
produces different <u>allele</u>;
ref. different, protein/polypeptide, produced; [2 max]

(b) $1 - X^{r}X^{r}$; $3 - X^{r}Y$; $9 - X^{R}X^{r}$; $10 - X^{R}Y$; [4]

- (c) answers must refer to phosphate ions
 - 1 altered shape/non-functional/no, carrier protein;
 - 2 less/no, reabsorption of phosphate ions (into blood);
 - 3 from, glomerular filtrate/lumen of/proximal convoluted tubule;
 - 4 more/all, phosphate ions excreted;
 - 5 low phosphate ion concentration in, blood/bones; R no phosphate ion conc [2 max]

[Total: 8]

Q10.

(a)	1 allele/gene, found	on X chro	mosome;				
	2 females have two	copies of,	allele/gene;				
	3 males have only	one copy o	f, allele/gene;				[2 max]
(b)	key to symbols						
	recessive allele Xª	(= allele fo	or CI)				
	dominant allele XA	(= allele fo	or normal iris);				
	cross 1 parental phenotypes	male	e with CI/cleft iris	and	normal fer	nale ;	
	gametes	Xª	or Y		all XA	;	
	offspring genotypes		X ^A X ^a	XAY	;		
	offspring phenotypes		normal female		nal male;		
			or				
	cross 2 parental phenotypes	m	ale with CI/cleft iri	s ar	norma	al female ;	
	gametes	Xª	or Y		X ^A or	Ха;	
	offspring genotypes	XAXa	XAY	Xa	Xª	XªY;	
	offspring phenotypes	normal female	normal male	cleft fema	iris/CI ale	cleft iris/CI male ;	[5]
offs	spring phenotypes must	be linked	to genotypes				
(c)	1 in 4/25%/0.25; R ra	atios					[1]
(-)	Iracymonacy Tell						Fotal: 81

Q11.

6

(a) enzyme acts on only one substrate; shape of active site is complementary to substrate; AVP; e.g. substrate held by temporary bonds / ES complex

[2 max]

(b) symbols (must be of same letter); parental genotypes and gametes; offspring genotypes and phenotypes linked;

[3]

- (c) 1. insulates axon (membrane);
 - 2. depolarisation occurs only at nodes (of Ranvier) / AW;
 - 3. local circuits;
 - saltatory conduction / AW;
 - 5. speeds transmission of, action potential / impulse;
 - AVP; e.g. speed increases up to 50 times / 100ms⁻¹

[3 max]

[Total: 8]

Q12.

7 (a)

nuclear division	letter of stage
	В
meiosis I	E
	J
	Н
	В Е Ј
	D
	G
	I.
11101001011	С
	Α

EJHF all in meiosis I;

EJHF in correct order;

GIC A all in meiosis II;

GICA in correct order;

[4]

- (b) 1. chiasma / crossing over;
 - between <u>non-sister</u> chromatids;
 - homologous chromosomes / bivalents; in correct context of mp1 or mp8
 in prophase I;

 - 5. exchange of genetic material / AW;
 - linkage groups broken;
 - new combination of alleles;
 - independent assortment; R random assortment
 - 9. in metaphase I;
 - 10. detail of independent assortment;
 - 11. AVP; e.g. possible mutation

[5 max]

[Total: 9]

Q13.

9	(a)	 example ; e.g. ad triplet code 	e / nucleotide sequence / mRNA dition / insertion / substitution / d ee (DNA nucleotide) bases; o mRNA codon;		4 max
	(b)	parental phenotypes	man without HD	woman with HD	
		parental genotypes	tt	Tt	
		gametes	all t	Tort;	
		offspring genotypes	Tt	tt	
		offspring phenotypes	Huntington's disease	normal;	
		probability of first child	d having D 50% / 0.50 / 1 in 2;		[3]
					[Total: 7]
Q14.					
7	(a)	correct symbols; e.g.	X ^A = (allele for) red-eye X ^a = (allele for) white-eye		
		parental genotypes	XA Xa and XaY;		
		gametes	X^A X^a X^a Y ;		
		offspring genotypes	$X^AX^a X^AY X^aX^a X^aY;$		
		offspring phenotypes	red-eyed red-eyed white-eyed female male female	white-eyed male ;	[5]
	(b)	(i) passes Y chromos	some onto son / passes X chrom-	osome onto daughter;	[1]
		(ii) heterozygous;			[1]
	(iii) gene / allele, muta	ition;		[1]

Q15.

[Total: 8]

7	(a)	heterozygous two different a	leles of a ge	ene / differe	ent allele pair for a	gene / AW ;		
		produces gam	etes with dif	ferent geno	types;	max 1		
		genotype alleles present	in an organ	ism / partic	ular alleles of a ge	ene / genetic cons	titution / AW;	[2]
	(b)	parental genot	ypes d ;					
		gametes AD Ad aD a	d x AD	Ad aD ad	;			
		two marks for	correct Pun	nett square	;; deduct one m	ark for each mista	ke	
		(all 4) phenoty	pes linked c	orrectly to	genotypes;			
		(probability of	yellow offspi	ring) 3 out	of 16 or 0.19 or	19%;		[6]
							[Tota	l: 8]
Q1	6.							
7	(a)	sex-linked (gene) carried	on, one sex	chromoso	ome/X, and not on	, the other/Y;		
		gene section of DNA that codes for			des/sequence of de;	bases,		[2]
	(b)	parental phenotypes	tortoisesh	ell female	black i	male		
		parental genotypes	XB	Χ°	X ^B Υ	' ;		
		gametes	$\mathbf{X}^{\mathbf{B}}$	Xo	XB	Y;		
		offspring genotypes	X_BX_B	X ^B Y	X_BX_O	X ^o Y;		
		offspring phenotypes	black female	black male	tortoiseshell female	orange male;		[4]
	(c)	tortoiseshell is	heterozygo	ous;				
		males, heterog	gametic/only	one X chr	omosome;			
		(therefore) only	y one copy	of gene/on	y black or orange	allele present;	[m	nax 2]
							То	tal: 8]

Q17.

	W ^s = allele fo	or warfarin susc	eptibility							
	parental phenotypes parental genotypes	re	sistant male W ^R W ^S	resistant W^R V						
	gametes	\mathbf{W}^{R}	W ^s	\mathbf{W}^{R}	w ^s ;					
	offspring genotypes	W ^R W ^R	W ^R W ^S	W ^R W ^S	W ^s W ^s ;					
	offspring phenotypes	resistant	resistant	resistant	susceptible;	[3]				
(b)	not enough \	Vitamin K found	(in the wild) / requir	e too much Vitam	nin K;	[1]				
(c)	competitive / reversible;									
	as the concentration of inhibitor increases, the rate of the (inhibited) reaction decreases or									
		arfarin increase	s, the rate at which	blood clots decre	eases; ora	[2]				
(d)	1. different	t, codon / triplet;								
	2. stop coo	don;								
	3. different	t amino acid;								
	4. different	t, primary / seco	ndary / tertiary / 3D,	structure;						
	5. shortene	ed, polypeptide	/ protein;							
	6. change	in function of pr	otein;		[3 max]				
						otal: 9]				

Q18.

Question 4				
(a)			· ;	
metaphase;				1
(b)				
centromeres divide / splits;	R break			
chromatids separate;				
idea movt. to opposite poles / centr	rioles;			
by microtubules / spindle fibres;				
idea.mechanism of movement;				3 max
(c)				
(i)		27	0.70	100
breaks down / disperses;				1
(ii)				
centrioles divides/replicate;				
to form two pairs (of centrioles);		20		
move to (opposite) poles;				2 max
(d)				
1 random alignment / independent different mix of maternal and pat				
2 crossing over / chiasmata formati between chromatids of homologo	ous chromosomes;			2
breaks up linkage groups / mixes	maternal and paternal	alleles;		
In 1 or 2 ref. different gametes pro	duced;			4 max
				Total: 11

Q19.

If genetic diagram	used	Penali	se once	for inc	correct :	symbol	s			
		W. 1,70 350			blook (o	PARTIES AND ADDRESS OF THE PARTIES AND ADDRESS O	- 50			
		orange	e domir	nant to	black (c	or conv	erse);			
orange scallop									-10	
	100		on oh				Sº Sb			
parents		Sº	S° Sb	Sb	X	S° .	5. 2.	Sb		
gametes		5		5		5	40	3		
genotype		S° S°		S° Sb		S° Sb		Sb Sb		
phenotype				orange				black		
,			40							
black scallop										
parents			Sb Sb		X		Sb Sb			
gametes				(Sb		Sb)			
genotype					Sb Sb					
phenotype					black					
Or										
If text explanation	given									
orange dominant t	o black (or con	verse):								
orange are heteroz										
(because) ref. 3:1										
link data to ratio;										
black are homozyg										00.22
because all offspri	ng are black;"									6
rate orange scallop			cross	test c	ross or	ange w	ith bla	ck;		
e will produce only			172	00.220						57
e will be homozygo		allala/m	una bua	adia a .						2 m

Q20.

......

Ques	ition 4	
(a)	parental genotype;	
	gametes;	
	offspring genotype;	
	offspring phenotype ;	
	penalise once if other symbols used	4
b)	suffer from vitamin K deficiency / require too much vitamin K ;	1
c)	warfarin will kill rats without resistance - homozygous recessive;	
	homozygous dominant rats require too much vitamin K;	
	heterozygous rats most likely to survive and produce offspring;	
	only 50% of offspring will be heterozygous;	3 max
(d)	results in a different codon / triplet;	
	(may) result in change of amino acid;	
	different primary protein structure;	
	this may result in change in protein function;	
	suitable example e.g. sickle cell anaemia ;	3 max
		Total: 11

Q21.

Q22.

Question 2

(a)	correct parental gen	otypes;	
	correct gametes;		
	correct genotypes of	f offspring;	
	correct phenotypes	linked to genotypes;	[4]
(b)	yellow shrunken hor	nozygous ;	
	double recessive;		[2]
(c)	$(381 \times 3/16) = 71$	(36/71) = 0.507;	
	$(381 \times 1/16) = 24$	(9/24) = 0.375;	
	1.80 ;		[3]
(d)	greater than 0.5; a	allow ecf	[1]
(e)	difference from expe	ected not significant; allow ecf	
	because greater than	[10] [2] 11 [2] 12 [2]	
	ratio phenotype is 9		
		differences are due to chance;	[2 max]
			T
			Total [12]

Q23.

Que	estio	n	Expected Answers	Marks
2	(a)	(i)	black red; 1 : 1 ;	2
		(ii)	black copper red; 2 : 1 : 1;	2
		(iii)	red copper; 3 1;	
	(b)	(i)	test / back, cross; with, copper / AtAt / homozygous recessive;	2
		(ii)	if all offspring red, homozygous; if some offspring copper, heterozygous; ref. equal proportions of offspring; mark (i) and (ii) together	4 max
			[Total: 10]	

Q24.

- 3 (a) any four from
 - 1 thick / dehydrated / sticky, mucus;
 - 2 builds up in, lung / gut / airways; A excess of mucus.... R blocks up
 - 3 infections in lungs; A named infection
 - 4 scar / damage, lungs;
 - 5 mucus, prevents secretion (of digestive enzymes) from pancreas / blocks pancreatic duct:
 - 6 malnutrition / inadequate digestion / inadequate absorption; Rindigestion
 - 7 reduced, growth / development;
 - 8 excessively salty sweat / muscle cramps;
 - 9 mucus blocks sperm duct / males sterile; female neutral [4 max]

/ 0.125 ;

(b) gametes BX bX BX BY bX bY;

offspring genotypes see table;

offspring phenotypes see table; R phenotypes if no gender

probability of CF daughter 1in 8 offspring / 1 in 4 daughters / 12.5%

gametes	BX	BY	bX	bY
ВХ	BBXX normal female	BBXY normal male	BbXX normal/carrier female	BbXY normal/carrier male
bX	BbXX normal/carrier female	BbXY normal/carrier male	bbXX CF female	bbXY CF male

[4]

(c)	1 2 3 4	mutation alters DNA base sequence; triplet of bases / three bases,(in DNA) codes for an amino acid; <i>R 'codon' re DNA</i> base substitution alters code; base, addition / deletion, produces frame shift / subsequent triplets have altered coding;
	5	ref. transcription ; ref. translation ; [4 max]
(d)	(i)	E has, AAG / GAA / 2As and 1G, missing / ora; [1]
	(ii)	E's polypeptide lacks one amino acid present in D's ; different primary structure ; may have different, secondary structure / tertiary structure / 3D shape ; [2 max]
		may have different, secondary structure? tertiary structure? 50 shape,
		[Total: 15]
Q25.		
8	1	CC ^a Bb X C ^h C ^a Bb;
	2	CB Cb CaB Cap x ChB Chb CaB Cap;
	3	offspring phenotypes: full black : full red : himalayan black : himalayan red : albino black : albino red ;
	4	phenotype ratio: 6 : 2 : 3 : 1 : 3 : 1;
	5/6	offspring genotypes in Punnett square ;; [6]
		ecf if incorrect symbols penalise the parent genotypes (pt 1) and mark rest of cross up to max 4
		ecf if one gene only used then mark to max 2
		[Total: 6]

Q26.

			[Total: 7]
7	(a)	allele different / alternative, form of a gene; A variety of a gene dominant (allele) that always expresses itself in the phenotype when present / (allele) which influences the phenotype even in the presence of an alternative allele / AW;	[2]
	(b)	parental phenotype; e.g. striped / long x striped / long A wild x wild parental genotype; e.g. AaBb x AaBb gametes; e.g. AB Ab aB ab offspring genotypes;;	
		offspring phenotypes; must be linked to genotypes accept other symbols if key used	[6]

(c) (i)					
		pheno	types of Dros	ophila meland	ogaster	
		grey body long wing	grey body vestigial wing	ebony body long wing	ebony body vestigial wing	
	observe numbe (O)	D27 (4)	79	68	30	
	expecte	ed 9	3	3	1	
	expecte numbe (E)		72	72	24	
	0 - E	-9	7	-4	6	
	(O - E)2 81	49	16	36	
	(O-E)	0.38	0.68	0.22	1.50	
						[3]
(i) 2.78; 8	pply ecf				[1]
(iii		presents probabi	lity of > 0.05	į		
	(probability	shows) difference	ces due to cha	ance;		[2 max]
						[Total:14]

Q27.

	1			[]
7	(a)		parents, carriers / heterozygous ;	
			child homozygous recessive ;	
			1/4 / 0.25 / 25%, chance ;	
		i.e.	mutation;	[3 max]
	(b)	(i)	gene technology / genetic engineering / description ;	[1]
		(ii)	glucagon;	[1]
		(iii)	low <u>blood glucose</u> concentration / during or after exercise; R sugar	[1]
	(c)	3	foreign / non-self / cell recognition ;	<i>a</i> 7
			stimulates immune response / AW;	[1 max]
	(d)		parental genotypes L ^M L ^N x L ^M L ^N	
			gametes L ^M or L ^N L ^M or L ^N	ν,
			parental genotypes and gametes for on	e mark
			offspring genotypes LMLM LMLN LMLN L	NLN ;
			offspring phenotypes MM MN MN	NN ; [3]
	1	100	penalise once for omission of L	2 th

			[Total: 13]
4		less outbreeding / more inbreeding ; AVP; e.g. L ^M has selective advantage in Inuit environment	[3 max]
		high frequency of L ^M / low frequency of L ^N , compared to other populations; R just highest L ^M / lowest L ^N	
	(e)	Canadian Inuit, allele frequencies / LMLN ratio, different from others;	

Q28.

(a) variation / different form, of a gene;
 (b) marks for reasons only
 Hb^A Hb^A
 low – susceptible to / die from, malaria;
 Hb^A Hb^S
 high – no (full blown) SCA / have SC trait;
 not, susceptible to / likely to die from, malaria;
 Hb^S Hb^S
 low – susceptible to / die from, SCA;
 [4]

© UCLES 2010

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2010	9700	41

- (c) 1 USA malaria not selection pressure;
 - 2 Hb^S no advantage;
 - 3 due to outbreeding;
 - 4 genetic testing can lead to termination of pregnancy or testing / counselling, leads to not having children;

[2 max]

[Total: 7]

Q29.

9	(a) dominant (allele) that always expresses itself (in the phenotype) when present					
		or (allele) which influences the pheno	type even in the presen	ce of an alternative a	allele;	
		gene length of DNA / sequence of nucleo	otides, coding for a (spe	cific) polypeptide;	A protein	[2]
	(b)					
		parental phenotypes	man without TSC	woman with TSC		
		parental genotypes	tt	Tt		
		gametes	all t	Tort	;	
		offspring genotypes	Tt	tt		
		offspring phenotypes	TSC	normal	;	
		probability of child having TSC	50% / 0.50 / 1in 2;			
						[3]
Q30		 spontaneous / random / chance mutation of, gene / allele; AVP; e.g. named mutagen / d 			[2 r [Tot a	max]
6	(2)	allele				
	(4)	different / alternative, form of a ge	ne; A varie	ty of a gene		
		one of two or more alternative nuc	cleotide sequences at a	single gene locus;	[1	max]
	dominant (allele) that (always) expresses itself in the phenotype when present / (allele) which influences the phenotype even in the presence of an alternative allele;					[2]
	(b)	parental genotypes; gametes; offspring genotypes (in Punnett so offspring phenotypes linked to ger ratio 9:3:3:1 linked to phenotypes	notypes;			[6]
					[Tot	al: 8]

Q31.

6	(a)	(i)	accept answers in a genetic diagram where genotypes are linked to phenotypes 1 agouti allele / Ca, dominant to black allele / Cb; ora 2 black parents homozygous recessive;	
			3 agouti parents heterozygous or homozygous;	[2 max]
		(ii)	accept answers in a genetic diagram where genotypes are linked to phenotypes 1 yellow allele / C ^y , dominant to, black allele / C ^b ; 2 ref. to modified 3:1; 3 (homozygous) genotype C ^y C ^y , lethal / does not survive;	[2 max]
				[Z IIIdX]
		(iii)	accept answers in a genetic diagram where genotypes are linked to phenotypes yellow allele / C ^y , dominant to all others; agouti / C ^a or black and tan / C ^{bl} , allele, dominant to black allele; A black allele recessive to all other alleles	
			3 yellow mice all heterozygous (must be stated);	[2 max]
	(b)	1 2 3	cross (black and tan mouse) with, black mouse / homozygous recessive mouse / if all offspring black and tan then parent, C ^{bt} C ^{bt} / homozygous; if some offspring are black (and some are black and tan) then parent,	
			C ^{tl} C* / heterozygous ;	[2 max]
			Г	Fotal: 8]
Q32	•			
1	(a)	alle	le – variation / different form, of a gene ;	
		don	ninant – (allele) always expresses itself (in the phenotype when present);	[2]
	(b)		greater the number of (CAG) repeats the earlier the symptoms first appear / inve- portional / negative correlation;	rsely
		pair	ed figures;	[2]
	(c)	1. fe	ear of needles;	
		2. fe	ear of positive result;	
		3. fe	ear of effect of result on other members of family;	
		4. n	o desire to have children;	
		5. fi	nancial / insurance, concerns / AW;	
		6. p	ossibility of false results;	
		7. c	ost of test;	
		8. n	ot worth having test because of no treatment;	[max 3]
				Total: 7]

Q33.

1	(a)	XRY	and	X'X' ;				
		$\mathbf{X}^{\mathbf{R}}$	Y	X	(X')	;	allow ecf from incorrect parental genotypes	
		$\mathbf{X}^{\mathbf{R}}\mathbf{X}^{\mathbf{r}}$	and	X'Y ;				[3]

(b) (i)

phenotype of fly	0	E	O-E	(O-E) ²	(O-E) ² E
red-eyed female	54	50	(+)4	16	0.32 ;
white-eyed male	46	50	(-)4	16	0.32;

0.64; allow ecf [3]

(ii) probability is greater than 0.05; A chi squared smaller than 3.84

no significant difference;

due to chance; [max 2]

[Total: 8]

Q34.

7 (a) centromere; [1]

(b) idea that different genes, are present/missing; R alleles
 different, proteins/poypeptides, produced/missing;

(c) XY;

 $X = X_1 = X = Y;$ $XX = XX_1;$ normal Turner's; [4]

[Total:7]

Q35.

7 (a) symbols and key; e.g. A = NF allele and a = normal allele parental genotypes and gametes; e.g. parental genotypes Aa x aa gametes A offspring genotypes and phenotypes linked; e.g. Aa has NF and aa is [3] unaffected (b) spontaneous/random/chance; mutation of, gene/allele; AVP; e.g. named mutagen/detail of mutation/in oocyte/in sperm [max 2] (c) compresses nerve; damages, myelin sheaths/Schwann cells; prevents, setting up of local circuits/saltatory conduction; stops Na+/K+ pumps from working; blocks blood supply; qualified; e.g. effect on, oxygen supply/glucose supply/ATP production AVP; e.g. may stop ion channels opening [max 3] [Total:8]

Q36.

7 (a) recessive only expressed in homozygote/two copies of the allele needed to be expressed/ not expressed in heterozygote/not expressed in presence of dominant allele; change in the structure of, DNA/gene/allele change in, base/nucleotide, sequence; [2] (b) suitable symbols and key; e.g. A = allele for normal (non PKU) a = allele for PKU correct parental genotypes plus correct gametes; offspring phenotypes linked to correct offspring genotypes; [3] (c) 1 fewer amino acids; change in primary structure; A different amino acid sequence 3 different, tertiary structure/3D shape; 4 ref. to active site of, PAH/enzyme, changed/absent; 5 PAH/enzyme/protein, non-functional/AW; A different function [max 3] [Total: 8]

Q37.

7 (a) gene length/section, of DNA sequence of, bases/nucleotides; coding for a, polypeptide/protein; allele different/alternative, form of a gene; A variety of a gene occupying same, locus/position (on homologous chromosomes); [4]

(b)

individual	phenotype	genotype	
1	В	I ^B I [□]	
2	A or B	I ^A I ^o or I ^B I ^o	
3	B or A	IBI° or IAI°	
4	Α	I^ I°	

Individuals 2 and 3 must have different phenotypes and genotypes

[4]

[Total: 8]

Section_B

1.

do not credit marking points out of sequence prophase 1 1 idea of condensation of chromosomes; homologous chromosomes pair up / bivalent formed; metaphase 1 3 homologous chromosomes / bivalents, line up on equator; 4 of spindle; 5 by centromeres; 6 independent assortment / described; 7 chiasmata / described; 8 crossing over / described; anaphase 1 9 chromosomes move to poles; homologous chromosomes / bivalents, separate; pulled by microtubules; 12 reduction division; metaphase 2 13 chromosomes line up on equator; 14 of spindle; anaphase 2 15 centromeres divide; 16 <u>chromatids</u> move to poles; 17 pulled by microtubules; 18 ref. haploid number; allow 4 or 14

[9 max]

allow 11 or 17

(b) change in, base / nucleotide, sequence (in DNA); during DNA replication; 20 21 detail of change; e.g. base, substitution / addition / deletion 22 frame shifts / AW; 23 different / new, allele; random / spontaneous; 25 mutagens; ionising radiation; 26 [6 max] UV radiation / mustard gas; [Total: 15] 11 (a) 1. (amino acid) code is three, bases / nucleotides; A triplet code (gene) mutation; R chromosome mutation 3. base / nucleotide, substitution / addition / deletion addition / deletion, has large effect (on amino acid sequence); completely new code after mutation / alters every 3 base sequence which follows; substitution may have little or no effect / silent mutation; 8. different triplet but same amino acid / new amino acid in non-functional part of protein; substitution may have big effect (on amino acid sequence); 10. could produce 'stop' codon; 11. sickle cell anaemia / PKU / cystic fibrosis; 12. reference to transcription or translation in correct context; A description [8 max] (b) 13. (haemophilia) allele on X chromosome; A gene 14. sex-linked; (haemophilia) allele recessive; 16. man, homogametic / has one X chromosome; Y chromosome does not have blood clotting gene; only daughter(s) get his X chromosome; daughter(s) carrier(s) of (haemophilia) allele; grandson(s) 50% chance of having, (haemophilia) allele / haemophilia; granddaughter(s) 50% chance of carrying, (haemophilia) allele; allow following marks from diagram correct symbols; e.g. X^H and X^h explained
 man's genotype; e.g. X^hY ignore partner's genotype F1 (daughter's) genotype; e.g. X^HX^h ignore her partner's genotype
 F2 (grandson's) genotypes; e.g. X^HY X^HY both required 26. F2 (granddaughter's) genotypes; e.g. XHXH XHXh both required or XhXh XHXh

[Total: 15]

3.

2.

(a) 1. reduction division / (to) halve number of chromosomes / diploid to haploid / AW; homologous chromosomes pair up / bivalents form ; ref. chiasmata / ref. crossing over; homologous chromosome pairs / bivalents, line up on equator; independent assortment; spindle / microtubules, attached to centromeres;
 chromosomes of each pair pulled to opposite poles; by shortening of, spindle / microtubules; 9. nuclear envelopes re-form; cytokinesis / AW ; [6 max] (b) accept alternative symbols for alleles throughout frequency of sickle cell anaemia is highest in areas where malaria is common; sickle cell anaemia red blood cells cannot carry oxygen very well / AW; A sickling blocks capillaries homozygous H^S / H^SH^S, have sickle cell anaemia / may die;
 homozygous H^N / H^NH^N, have normal, Hb / red blood cells; 15. heterozygotes, have sickle cell trait (sickle cell trait) red blood cells not (severely) affected; malaria parasite / Plasmodium, affects red blood cells ; 17. malaria lethal; 18. sickle cell trait people / heterozygotes, less likely to suffer from (severe effects of) have selective advantage; 20. pass on both HN and HS; malaria selects against, homozygous H^N / H^NH^N; 22. sickle cell anaemia selects against, homozygous HS / HS HS; 23. idea that sickle cell allele is maintained within population because of sickle cell trait individuals; [9 max]

[Total: 15]