

Q1.

(a) e.g. infinite (voltage) gain infinite input impedance zero output impedance infinite bandwidth infinite slew rate (any three, 1 each)

B3 [3]

(b) (i) negative (feedback)

B<sub>1</sub> [1]

(ii) 1 gain (= 5.8/0.069) = 84

**B1** [1]

(ii) 2 gain = 1 + 120/X84 = 1 + 120/X $X = 1.45 \text{ k}\Omega$ 

- [2]
- (iii) gain increases OR bandwidth reduced OR output increases

[1]

**Q2**.

- Ç. C. (a) blocks labelled sensing device / sensor / transducer **B1** processor / processing unit / signal conditioning **B1** [2]
  - (b) (i) two LEDs with opposite polarities (ignore any series resistors) correctly identified as red and green
- M1 A1 [2]

(ii) correct polarity for diode to conduct identified hence red LED conducts when input) ve or vice versa M1 A<sub>0</sub> [1]

Q3.

- 10 (a) (part of) the output is added to /returned to / mixed with the input and is out of phase with the input / fed to inverting input
- **B1** [2]

(b) 25 = 1 +

C1 A<sub>1</sub> [2]

(c) (i) -2 V

[1]

(ii) 9 V

A1 [1]

**Q4**.



| 9   | (a) | (i)   | point X shown correctly                                                                                                                                                                                          | B1             | [1]                  |     |
|-----|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|-----|
|     |     | (ii)  | op-amp has <u>very large</u> / infinite gain<br>non-inverting input is at earth (potential) / earthed / at 0 V<br>if amplifier is not to saturate, inverting input must be (almost)                              | M1<br>M1       |                      |     |
|     |     |       | at earth potential / 0 (V) same potential as inverting input                                                                                                                                                     | A1             | [3]                  |     |
|     | (b) | (i)   | total input resistance = $1.2 \text{ k}\Omega$<br>(amplifier) gain (= $-4.2 / 1.2$ ) = $-3.5$<br>(voltmeter) reading = $-3.5 \times -1.5$                                                                        | C1<br>C1       |                      |     |
|     |     |       | = 5.25 V<br>(total disregard of signs or incorrect sign in answer, max 2 marks)                                                                                                                                  | A1             | [3]                  |     |
|     |     | (ii)  | (less bright so) resistance of LDR increases<br>(amplifier) gain decreases<br>(voltmeter) reading decreases                                                                                                      | M1<br>M1<br>A1 | [3]                  |     |
| Q5. |     |       |                                                                                                                                                                                                                  |                |                      |     |
| 9   | (a) | (i)   | fraction of the output (signal) is added to the input (signal) out of phase by 180° / $\pi$ rad / to inverting input                                                                                             |                | M1<br>A1             | [2] |
|     |     | (ii)  | e.g. reduces gain increases bandwidth greater stability reduces distortion                                                                                                                                       |                |                      |     |
|     |     |       | (any two, 1 mark each)                                                                                                                                                                                           |                | B2                   | [2] |
|     | (b) | (i)   | gain = 4.4 / 0.062<br>= 71                                                                                                                                                                                       |                | A1                   | [1] |
|     |     | (ii)  | 71 = 1 + 120/R<br>$R = 1.7 \times 10^3 \Omega$                                                                                                                                                                   |                | C1<br>A1             | [2] |
|     | (c) | ma    | the amplifier not to saturate aximum output is $(71 \times 95 \times 10^{-3}~=)$ approximately 6.7 V pply should be +/- 9 V                                                                                      |                | B1<br>M1<br>A1       | [3] |
| Q6. |     |       |                                                                                                                                                                                                                  |                |                      |     |
| 10  | (a) | ) (i) | strain gauge                                                                                                                                                                                                     |                | B1                   | [1] |
|     |     | (ii)  | piezo-electric / quartz crystal / transducer                                                                                                                                                                     |                | B1                   | [1] |
|     | (b  | ) cir | rcuit: coil of relay connected between sensing circuit output and earth switch across terminals of external circuit diode in series with coil with correct polarity for diode second diode with correct polarity |                | B1<br>B1<br>B1<br>B1 | [4] |

Q7.



| 9   | (a) |       | compare two potentials / voltages<br>put depends upon which is greater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1<br>A1             | [2] |
|-----|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
|     | (b) | (i)   | resistance of thermistor = $2.5  k\Omega$ resistance of X = $2.5  k\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C1<br>A1             | [2] |
|     |     | (ii)  | at 5 °C / at < 10 °C, $V^- > V^+$<br>so $V_{\text{OUT}}$ is -9V<br>at 20 °C / at > 10 °C, $V^- < V^+$ and $V_{\text{OUT}}$ is +9 V<br>$V_{\text{OUT}}$ switches between negative and positive at 10 °C<br>(allow similar scheme if 20 °C treated first)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1<br>A1<br>B1<br>B1 | [4] |
| Q8. |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |     |
| g   | ) ( | la    | nin / fine metal wire y-out shown as a grid ncased in plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B1<br>B1             | [3] |
|     | (   | b) (i | gain (of amplifier)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1                   | [1] |
|     |     | (ii   | for $V_{\text{OUT}} = 0$ , then $V^+ = V^-$ or $V_1 = V_2$<br>$V_1 = (1000/1125) \times 4.5$<br>$V_1 = 4.0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C1<br>C1<br>A1       | [3] |
|     |     | (iii  | of the property of the proper | C1<br>A1             | [2] |
| Q9. |     |       | · O- Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |     |
| 10  | (a) | ligh  | t-dependent resistor (allow LDR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1                   | [1] |
|     | (b) | (i)   | two resistors in series between +5 V line and earth midpoint connected to inverting input of op-amp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1<br>A1             | [2] |
|     |     | (ii)  | relay coil between diode and earth<br>switch between lamp and earth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1<br>A1             | [2] |
|     | (c) | (i)   | switch on/off mains supply using a low voltage/current output (allow 'isolates circuit from mains supply')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1                   | [1] |
|     |     | (ii)  | relay will switch on for one polarity of output (voltage) switches on when output (voltage) is negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C1<br>A1             | [2] |

Q10.



| 9           | (a) e   | .g. infinite input impedance/resistance zero output impedance/resistance infinite (open loop) gain infinite bandwidth infinite slew rate                                                                                    |                |     |
|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
|             | (á      | any four, one mark each)  B4                                                                                                                                                                                                |                | [4] |
|             | (b) g   | raph: square wave M1 180° phase change A1 amplitude 5.0 V A1                                                                                                                                                                |                | [3] |
|             | d<br>d  | orrect symbol for LED iodes connected correctly between V <sub>OUT</sub> and earth iodes identified correctly A1 special case: if diode symbol, not LED symbol, allow 2 <sup>nd</sup> and 3 <sup>rd</sup> marks to be score | ∍d)            | [3] |
| Q11.        | •       |                                                                                                                                                                                                                             |                |     |
| 9           | (a) (i) | light-dependent resistor/LDR                                                                                                                                                                                                | B1             | [1] |
|             | (ii)    | strain gauge                                                                                                                                                                                                                | B1             | [1] |
|             | (iii)   | quartz/piezo-electric crystal                                                                                                                                                                                               | B1             | [1] |
|             | (b) (i) | resistance of thermistor decreases as temperature increses etiher $V_{\text{OUT}} = V \times R / (R + R_{\text{T}})$ or current increases and $V_{\text{OUT}} = IR$                                                         | M1<br>A1<br>A1 | [3] |
|             | (ii)    | either change in $R_{\rm T}$ with temperature is non-linear or $V_{\rm OUT}$ is not proportional to $R_{\rm T}$ / change in $V_{\rm OUT}$ with $R_{\rm T}$ is non-linear so change is non-linear                            | M1<br>A1       | [2] |
| Q12.        |         |                                                                                                                                                                                                                             |                |     |
| 9           | (a) 30  | litres → 54 litres (allow ± 4 litres on both limits)                                                                                                                                                                        | A1             | [1] |
|             | (b) (i) | only 0.1 V change in reading for 10 litre consumption (or similar numbers) above about 60 litres gradient is small compared to the gradient at about 40 litres                                                              | B1<br>es<br>B1 | [2] |
|             | (ii)    | voltmeter reading (nearly) zero when fuel is left voltmeter reads only about 0.1 V when 10 litres of fuel left in tank ("voltmeter reads zero when about 4 litres of fuel left in tank" scores 2 marks)                     | C1<br>A1       | [2] |
| <b>∩</b> 12 |         |                                                                                                                                                                                                                             |                |     |

Q13.



| 8   | (a       | i) (i) | -9 V                                                                                                                                                                                                                                                                                                                                 |                                                                       |            |
|-----|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------|
|     |          | (ii)   | + 9 V (both (i) and (ii) correct for the mark)                                                                                                                                                                                                                                                                                       | B1                                                                    | [1]        |
|     | (b       | (no    | ×                                                                                                                                                                                                                                                                                                                                    | B1                                                                    | [3]        |
|     | (0       | ;) (i) | cct: thermistor and resistor in series                                                                                                                                                                                                                                                                                               |                                                                       | [2]        |
|     |          | (ii)   | as temperature decreases, thermistor resistance increases                                                                                                                                                                                                                                                                            | M1                                                                    | [3]        |
| Q14 |          |        |                                                                                                                                                                                                                                                                                                                                      | $\mathcal{L}_{\mathcal{L}_{\mathcal{L}_{\mathcal{L}_{\mathcal{L}}}}}$ |            |
| 10  | (a)      |        | . inverting (amplifier)  . gain of op-amp is very large / infinite non-inverting input is at earth / 0V for amplifier not to saturate, P must be at about earth / 0V                                                                                                                                                                 | B1<br>B1<br>B1<br>B1                                                  | [1]<br>[3] |
|     |          | I<br>I | input resistance is very large so) current in $R_1$ = current in $R_2$ = $V_{\text{IN}} / R_1$ = $-V_{\text{OUT}} / R_2$ (minus sign can be in either of the equations) sence $gain = V_{\text{OUT}} / V_{\text{IN}} = -R_2 / R_1$                                                                                                   | B1<br>B1<br>B1<br>B1<br>A0                                            | [4]        |
|     | (b)      | 7-7-   | . feedback resistance = $33.3 \text{ k}\Omega$<br>gain (= $33.3 / 5$ ) = $6.66$<br>$V_{\text{OUT}}$ (= $6.66 \times 1.2$ ) = $8.0 \text{ V}$ (o) – acceptable, allow 1 s.f.)<br>I. feedback resistance = $8.37 \text{ k}\Omega$<br>$V_{\text{OUT}}$ (= $\{6.66 \times 1.2\} / 5$ = $2.0 \text{ V}$ (+ or – acceptable, allow 1 s.f.) | C1<br>C1<br>A1<br>C1<br>A1                                            | [3]<br>[2] |
| Q15 | <b>.</b> | Ē      | Increase in lamp-LDR distance gives) decrease in intensity<br>eedback / LDR resistance increases<br>oltmeter reading increases / becomes more negative                                                                                                                                                                               | M1<br>M1<br>A1                                                        | [3]        |
| 9   | (a)      | as cra | ance of wire = $\rho L/A$                                                                                                                                                                                                                                                                                                            | M1<br>M1                                                              | [3]        |
|     | (b)      |        | $= \Delta R / R$ = (146.2 - 143.0) / 143.0 × 100 = 2.24%                                                                                                                                                                                                                                                                             | C1                                                                    | [3]        |
|     |          |        |                                                                                                                                                                                                                                                                                                                                      | Liotai                                                                | . 0]       |

Q16.



| 1   | at  | 16 °  | C, V <sup>+</sup> = 1.00 V and V <sup>-</sup> = 0.98 V <i>or</i> V <sup>+</sup> > V <sup>-</sup>                                                                                                                                                                                                                                           | <mark>M</mark> 1 |        |
|-----|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|
|     | as  | tem   | R is 'on' <u>and</u> diode G is 'off'perature rises, diode R goes 'off' <u>and</u> diode G goes 'on'<br>e.c.f. from 2 <sup>nd</sup> to 3 <sup>rd</sup> marks and also 3 <sup>rd</sup> to 4 <sup>th</sup> marks)                                                                                                                            | A1<br>B1         | [4]    |
|     |     |       |                                                                                                                                                                                                                                                                                                                                            | [Tota            | al: 4] |
| Q17 | 7.  |       |                                                                                                                                                                                                                                                                                                                                            |                  |        |
| 9   | (a) | e.g   | reduces gain increases bandwidth less distortion greater stability(1 each, max 2)                                                                                                                                                                                                                                                          | B2               | [2]    |
|     | (b) |       | $n = -R_F/R_I$ $= -8.0/4.0$ nerical value is 2                                                                                                                                                                                                                                                                                             |                  | [1]    |
|     | (c) | (i)   | 2, 6 and 7                                                                                                                                                                                                                                                                                                                                 | A1               | [1]    |
|     |     | (ii)  | e.g. digital-to-analogue converter (allow DAC) adding / mixing signals with 'weighting'                                                                                                                                                                                                                                                    | B1               | [1]    |
|     |     |       |                                                                                                                                                                                                                                                                                                                                            | [Tota            | l: 5]  |
| Q18 | 3.  |       |                                                                                                                                                                                                                                                                                                                                            |                  |        |
| 9   | (a  | (i)   | non-inverting (amplifier)                                                                                                                                                                                                                                                                                                                  | B1               | [1]    |
|     |     | (ii)  | $(G =) 1 + R_2 / R_1$                                                                                                                                                                                                                                                                                                                      | B1               | [1]    |
|     | (b  | ) (i) | gain = 1 + 100 / 820<br>output = 17 mV                                                                                                                                                                                                                                                                                                     | C1<br>A1         | [2]    |
|     |     | (ii)  | $9 \text{ V}$ $(R_2 / R_1 \text{ scores } 0 \text{ in (a)(ii) but possible } 1 \text{ mark in each of (b)(i) and (b)(ii)}$ $(1 + R_1 / R_2) \text{ scores } 0 \text{ in (a)(ii), no mark in (b)(i), possible } 1 \text{ mark in (b)(ii)}$ $(1 - R_2 / R_1) \text{ or } R_1 / R_2 \text{ scores } 0 \text{ in (a)(ii), (b)(i) and (b)(ii)}$ | A1               | [1]    |

Q19.



| 10   | (a) | e.g        | e.g. infinite input impedance / resistance<br>zero output impedance / resistance                                                                                                                                                                                                                      |                                                                                                                                                                                                 |                          |     |  |  |
|------|-----|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|--|--|
|      |     |            | infinite gain<br>infinite bandwidth                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                 |                          |     |  |  |
|      |     | (an        | infinite slew rate (any three, 1 each)                                                                                                                                                                                                                                                                |                                                                                                                                                                                                 |                          |     |  |  |
|      | (b) | (i)        | <ul> <li>(i) with switch open, V<sup>-</sup> is less (positive) than V<sup>+</sup> output is positive with switch closed, V<sup>-</sup> is more (positive) than V<sup>+</sup> so output is negative (allow similar scheme if V<sup>-</sup> more positive than V<sup>+</sup> treated first)</li> </ul> |                                                                                                                                                                                                 |                          | [3] |  |  |
|      |     | (ii)       | 1.<br>2.                                                                                                                                                                                                                                                                                              | diodes connected correctly between output and earth green identified correctly (do not allow this mark if not argued in (i))                                                                    | M1<br>A1                 | [2] |  |  |
| Q20  | •   |            |                                                                                                                                                                                                                                                                                                       | Ó                                                                                                                                                                                               | Ĉ.                       |     |  |  |
| 9    | (a) | e.g.       |                                                                                                                                                                                                                                                                                                       | uced gain<br>eased stability                                                                                                                                                                    |                          |     |  |  |
|      |     | (allo      | grea                                                                                                                                                                                                                                                                                                  | eased stability after bandwidth or less distortion by two sensible suggestions, 1 each, max 2)  connected to midpoint between resistors and clear and input to $V^+$ clear $V^+ = 1 + 12000/R$  | B2                       | [2] |  |  |
|      | (b) |            | Vou                                                                                                                                                                                                                                                                                                   | connected to midpoint between resistors clear and input to V <sup>+</sup> clear                                                                                                                 | B1<br>B1                 | [2] |  |  |
|      |     | (ii)       | 15 :                                                                                                                                                                                                                                                                                                  | $A = 1 + R_F/R$<br>= 1 + 12000/R<br>: 860 $\Omega$                                                                                                                                              | C1<br>A1                 | [2] |  |  |
|      | (c) | gra        | ph: s                                                                                                                                                                                                                                                                                                 | traight line from (0,0) to (0.6,9.0) traight line from (0.6,9.0) to (1.0,9.0)                                                                                                                   | B1<br>B1                 | [2] |  |  |
|      | (d) | eith<br>or | er                                                                                                                                                                                                                                                                                                    | relay can be used to switch a large current/voltage output current of op-amp is a few mA/very small relay can be used as a remote switch for inhospitable region/avoids using long heavy cables | M1<br>A1<br>(M1)<br>(A1) | [2] |  |  |
| Q21. | •   |            |                                                                                                                                                                                                                                                                                                       | 43                                                                                                                                                                                              |                          |     |  |  |
| 9    | (a) | any        | valu                                                                                                                                                                                                                                                                                                  | e greater than, or equal to, $5k\Omega$                                                                                                                                                         | B1                       | [1] |  |  |
|      | (b) | (i)        | 'pos                                                                                                                                                                                                                                                                                                  | itive' shown in correct position                                                                                                                                                                | B1                       | [1] |  |  |
|      |     | (ii)       | <b>V</b> *                                                                                                                                                                                                                                                                                            | = (500/2200) × 4.5                                                                                                                                                                              | D4                       |     |  |  |
|      |     |            | gree                                                                                                                                                                                                                                                                                                  | ≈ 1V  > V <sup>+</sup> so output is negative en LED on, (red LED off) ew full ecf of incorrect value of V <sup>+</sup> )                                                                        | B1<br>M1<br>A1           | [3] |  |  |
|      |     | (iii)      |                                                                                                                                                                                                                                                                                                       | er $V^+$ increases or $V^+ > V^-$<br>en LED off, red LED on                                                                                                                                     | M1<br>A1                 | [2] |  |  |



## Q22.

| 9   | (a) | e.g. zero output impedance/resistance infinite input impedance/resistance infinite (open loop) gain infinite bandwidth infinite slew rate                                                                                     |                                                                                                                                                                              |                |     |  |  |
|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|--|--|
|     |     | 1 each, max. 3                                                                                                                                                                                                                |                                                                                                                                                                              |                |     |  |  |
|     | (b) | <ul> <li>b) (i) graph: square wave correct cross-over points where V<sub>2</sub> = V<sub>1</sub> amplitude 5 V correct polarity (positive at t = 0)</li> </ul>                                                                |                                                                                                                                                                              | M1<br>A1<br>A1 | [4] |  |  |
|     |     | (ii)                                                                                                                                                                                                                          | correct symbol for LED diodes connected correctly between V <sub>OUT</sub> and earth correct polarity consistent with graph in (i) ( <i>R points 'down' if (i) correct</i> ) | M1<br>A1<br>A1 | [3] |  |  |
| Q23 |     |                                                                                                                                                                                                                               |                                                                                                                                                                              |                |     |  |  |
| 9   | (a) | ligh                                                                                                                                                                                                                          | nt-emitting diode (allow LED)                                                                                                                                                | B1             | [1] |  |  |
|     | (b) | b) gives a high or a low output / +5 V or -5 V output dependent on which of the inputs is at a higher potential                                                                                                               |                                                                                                                                                                              | M1<br>A1       | [2] |  |  |
|     | (c) | (i)                                                                                                                                                                                                                           | provides a reference/constant potential                                                                                                                                      | B1             | [1] |  |  |
|     |     | (ii)                                                                                                                                                                                                                          | determines temperature of 'switch-over'                                                                                                                                      | B1             | [1] |  |  |
|     | (d) | (i)                                                                                                                                                                                                                           | relay                                                                                                                                                                        | A1             | [1] |  |  |
|     |     | (ii)                                                                                                                                                                                                                          | relay connected correctly for op-amp output and high-voltage circuit diode with correct polarity in output from op-amp                                                       | B1<br>B1       | [2] |  |  |
| Q24 |     |                                                                                                                                                                                                                               |                                                                                                                                                                              |                |     |  |  |
| 9   | (a) |                                                                                                                                                                                                                               | rates on / takes signal from sensing device<br>that) it gives an voltage output                                                                                              | B1<br>B1       | [2] |  |  |
|     | (b) | thermistor and resistor in series between +4 V line and earth $V_{\text{OUT}}$ shown clearly across either thermistor or resistor $V_{\text{OUT}}$ shown clearly across thermistor                                            |                                                                                                                                                                              |                | [3] |  |  |
|     | (c) | e.g. remote switching switching large current by means of a small current isolating circuit from high voltage switching high voltage by means of a small voltage/current (any two sensible suggestions, 1 each to max. 2)  B2 |                                                                                                                                                                              |                |     |  |  |

Q25.



[3]

(a) e.g. zero output impedance/resistance infinite input impedance/resistance infinite (open loop) gain infinite bandwidth infinite slew rate

(1 each, max. 3)

(b) (i) gain = 1 + (10.8 / 1.2)

(b) (i) gain = 
$$1 + (10.8 / 1.2)$$
 C1 A1 [2]

(ii) graph: straight line from (0,0) towards 
$$V_{\text{IN}}$$
 = 1.0 V,  $V_{\text{OUT}}$  = 10 V B1 horizontal line at  $V_{\text{OUT}}$  = 9.0 V to  $V_{\text{IN}}$  = 2.0 V B1 correct +9.0 V  $\rightarrow$  -9.0 V (and correct shape to  $V_{\text{IN}}$  = 0) B1 [3]

## Q26.

11 (a) (i) inverting amplifier [1] gain is very large/infinite **B1** V<sup>+</sup> is earthed/zero **B1** for amplifier not to saturate, P must be (almost) earth/zero [3] (b) (i)  $R_A = 100 \text{ k}\Omega$ A1  $R_{\rm B} = 10 \, \rm k\Omega$  $V_{IN} = 1000 \text{ mV}$ [3] (ii) variable range meter **B1** [1]

## Q27.

10 (a) compares the potentials/voltages at (ne) (inverting and non-inverting) inputs **B1** output (potential) dependent on which input is the larger  $V^+ > V^-$ , then  $V_{\text{OUT}}$  is positive **B1** states the other condition [3] **B1** (b) (i) ring drawn around both the LEDs (and series resistors) **B1** [1] (ii)  $V = (1.5 \times 2.4)/(1.2 + 2.4) = 1.0 \text{ V}$ **B1** [1]  $(allow 1.5 \times 2.4/3.6 = 1.0 \text{ V})$ Vour switches at +1.0V B1 (iii) 1. maximum V<sub>OUT</sub> is 5.0 V **B1** when curve is above  $+1.0 \,\mathrm{V}$ ,  $V_{\mathrm{OUT}}$  is negative (or v.v.) **B1** [3] at time t<sub>1</sub>, diode R is emitting light, diode G is not emitting **B1** at time t2, diode R is not emitting, diode G is emitting **B1** [2]

(must be consistent with graph line. If no graph line then 0/2)

Q28.



| 10   | (u) | infir<br>infir | infinite bandwidth infinite slew rate 1 mark each, max. 3                                                                                                                               |                | [3] |
|------|-----|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
|      | (b) | (i)            | at 1.0 °C, thermistor resistance is 3.7 k $\Omega$ amplifier gain = $-R/740$ = $-3700/740$ (negative sign essential) = $-5.0$                                                           | B1<br>C1<br>C1 |     |
|      |     |                | potential = 1.0/-5.0 = -0.20 V                                                                                                                                                          | A1             | [4] |
|      |     | (ii)           | at 15 °C, $R = 2.15 \text{ k}\Omega$ (allow $\pm 0.05 \text{ k}\Omega$ )                                                                                                                | C1             |     |
|      |     |                | reading = $(2150/740) \times 0.2$<br>= $0.58 \text{V} (0.59 \text{V} \rightarrow 0.57 \text{V})$                                                                                        | A1             | [2] |
|      | (c) | (i)            | 0.68 V                                                                                                                                                                                  | A1             | [1] |
|      |     | (ii)           | resistance (of thermistor) does not change linearly with temperature                                                                                                                    | B1             | [1] |
| Q29. |     |                |                                                                                                                                                                                         |                |     |
| 10   | (a) | (i)            | thermistor/thermocouple                                                                                                                                                                 | B1             | [1] |
|      |     | (ii)           | quartz crystal/piezoelectric crystal or transducer/microphone                                                                                                                           | В1             | [1] |
|      | (b) | (i)            | $V_{\rm OUT}$ = -5 V inverting input is positive $or$ V_is positive $or$ V_ > V+ so $V_{\rm OUT}$ is negative op-amp has very large/infinite gain and so saturates                      | A1<br>B1<br>B1 | [3] |
|      |     | (ii)           | sketch: $V_{\text{OUT}}$ switches from (+) to (–) when $V_{\text{IN}}$ is zero $V_{\text{OUT}}$ is +5 V or –5 V $V_{\text{OUT}}$ is negative when $V_{\text{IN}}$ is positive (or v.v.) | B1<br>M1<br>A1 | [3] |



whith the sale explicitle.