Q1.

3 (a)	A	vesicies containing transmitter/acetylcholine/synaptic vesicie;	
	В	presynaptic membrane;	
	C	synaptic cleft/gap;	
	D	post synaptic membrane;	
	E	receptor/protein/Na ⁺ gate;	
			5

(b) arrow pointing down;

(c) ref. low Ca²⁺ in synaptic knob/high Ca²⁺ outside knob; action potential/depolarization causes opening of Ca²⁺ channels; Ca²⁺ into synaptic knob; causes vesicles to move towards presynaptic membrane; causes vesicles to fuse with presynaptic membrane; vesicle contents/transmitter/exocytosis into synaptic cleft/gap;

3 max

1

Total: 9

Q2.

(a) A microvilli / brush border; В invagination / infolding of membrane / basal channels; 2 (b) basal channels / microvilli / brush border - increase surface area; many mitochondria - provide ATP for active transport; carrier proteins / cation pumps in csm - active uptake / facilitated diffusion / co-transport; tight junctions - prevent migration of membrane proteins / separate tubule fluid; ref. to pincocytosis - protein uptake; 3 max (c) Na* actively transported (out of cell) into blood; creates concentration gradient; Na+ enters cell by diffusion; through cotransporter / symporter proteins; glucose cotransported / facilitated diffusion (from lumen to cells); glucose diffuses into blood capillaries; 3 max (d) proximal convoluted tubule cells have a low / more negative water / solute potential: due to high concentration of salts / ions / glucose / Na+; water enters by osmosis: down water potential gradient (idea); 2 max Total: 10

Q3.

Qu	estion		Marks
3	(a)	idea of energy conversion (linked to receptor);	
		Na ⁺ in / AW ;	
		depolarization;	
		receptor / generator potential;	
		ref. to threshold;	
		(therefore) action potential / wave of depolarisation ;;	3 max
	(b)	(in / from) CNS / brain / spinal cord ;	
		ref. to synapse with intermediate / relay neurone;	
		ref. to neuromuscular junction / (neuro)transmitter released;	
		ref. response;	3 max
	(c)	ref. synapses;	
		vesicles containing transmitter only found on preSM;	
		receptors for transmitter only found on postSM;	
		ref. to refractory period / hyperpolarisation;	2 max
			Total: 8

Q4.

Question		on	Expected Answers	Marks
3	(a)		A – basement membrane ; B – minor process / foot ;	[2]
	(b)		arrow going from capillary (through pore in capillary wall) and through gaps in podocyte processes; arrow continues into renal capsule;	[2]
	(c)	(i)	glomerular filtrate ;	[1]
	(d)	(ii)	less protein ; no large protein ; ref. less than MM 68 000 to 69 000 ; no blood cells ; AVP ; sufficient hydrostatic (blood) pressure ; comparison between afferent and efferent vessels ;	[2 max]
			to force fluid through; basement membrane; selective barrier / AW;	[3 max]

Q5.

4	(a)	acetylcholine / Ach ;	[1]	
	(b)	wave of depolarisation / action potential, in pre-synaptic axon / membrane ; Ca^{2^+} channels open ; Ca^{2^+} enter pre-synaptic neurone / synaptic knob ; causes synaptic vesicles to move towards presynaptic membrane ; ref. exocytosis of Ach / neurotransmitter ;	[4 max]	
	(c)	vesicles found only in, pre-synaptic knob / neurone; receptors found only in post-synaptic membrane;	[2] [Total: 7]	

Q6.

- 4 (a) 1. norm concentration of blood glucose is 80 120 mg 100cm³; (A within range)
 - 2. ß cells of, Islets of Langerhans / pancreas, detect increase;
 - 3. ref. K⁺ channels close / role of Ca ²⁺;
 - 4. secrete insulin;
 - 5. ref. glycogenesis;
 - 6. increased uptake of glucose (by cells);
 - 7. increased use of glucose in respiration / glucose converted to fat;
 - ref. negative feedback / described ;

[4 max]

Q7.

- 2 (a) A (pancreatic) duct; A capillary
 - B islet of Langerhans / α and β cells;

[2]

(b) α cells / β cells / islets / B, secrete, hormones / glucagon / insulin ;

into the blood / not into a duct;

[2]

- (c) 1 increases permeability of membrane to glucose / increases glucose uptake;
 - 2 increases respiration of glucose;
 - 3 (increases), conversion of glucose to glycogen / glycogenesis;
 - 4 (increases) protein / fat, synthesis;

[2 max]

- (d) 1 it is identical to human insulin / ora;
 - 2 works better than non-human insulin / more rapid response;
 - 3 no / fewer, rejection problems / side effects / allergic reactions;
 - 4 ref. to ethical / moral / religious, issues;
 - 5 cheaper to produce in large volume / unlimited availability; R cheap to produce
 - 6 less risk of, transmitting disease / infection;
 - 7 good for people who have developed intolerance / allergic reactions / immune responses to <u>animal</u> insulin; [2 max]

[Total: 8]

Q8.

	(a)			
1.	β cells detect glucose levels	or	no detection of blood glucose conc.	;
2.	β cells secrete insulin	or	no insulin released	;
3.	when blood glucose concentration rises	or	when blood glucose concentration rises	;
4.	(insulin causes) muscle cells / adipose tissue / liver cells	or	muscle cells / adipose tissue / liver cells	;
5.	to increase uptake of glucose from blood / increased membrane permeability to glucose	or	do not take up excess glucose	;
6.	(insulin causes liver cells) to convert glucose to glycogen	or	glucose not converted to glycogen (by liver cells)	;
7.	(insulin causes liver cells) to increase respiration of glucose	or	rate of respiration of glucose does not increase	;
8.	(if no β cells) no control of blood glucose levels / AW	or	no control of blood glucose levels / AW	;

[4 max]

- (b) (i) 1. (yes) more people with infection have CFRD than those without infection;
 - 2. use of 'with CFRD' comparative figs;

either using number of people - 44 / 52 / 96 (no infection)

against 106 / 121 / 227 (with infection)

or using FEV1 values - 71.1 / 53.6 / 124.7 (no infection)

against 49.0 / 42.0 / 91.0 (with infection)

or 28.5% males against 35.8% females (no infection) or 38.9% males against 50.05% females (with infection)

3. AVP; e.g. we do not know how the sample was chosen (so this may not be a valid conclusion) [2 max]

(ii)
$$\frac{2.2}{71.4} \times 100$$
; = 3.08/3.1;
or
 $\frac{2.2}{73.6} \times 100$; = 2.99/3.0; [2]

- more lung damage in females (with CFRD) than in males;
 females (with CFRD) have lower FEV₁ than males;

 - 3. use of figures; e.g. males FEV1 49 whereas female FEV1 42 or female FEV₁ 1.16 times lower than male FEV₁ [3]
- (c) 1. CFTR protein acts as chloride channel (in cell membranes); with CF
 - faulty (CFTR) gene;
 - 3. faulty / non-functional, (CFTR) protein produced;
 - 4. chloride ions not able to move out (of cell);
 - by active transport;
 - 6. so less water passes out (of cell);
 - 7. down water potential gradient; A by osmosis
 - 8. mucus secreted contains less water;

[4 max]

[Total: 15]

Q9.

6 ((a) ((i)	A – calcium ions;	A Ca ²⁺	R calcium/Ca/Ca ⁺	
			B – sodium ions ;	A Na ⁺	R sodium/Na	[2]
	(i	ii)	exocytosis;			[1]
	(ii	ii)	depolarisation (of post-	-synaptic meml	orane)/action potential;	[1]
	(iv	v)	1. splits ACh;			
			2. into acetate and cho	oline;		
			3. stops continuous de	polarisation of	postsynaptic membrane/AW;	
			4. choline recycled (int	o presynaptic r	neurone);	[max 3]
((b)	bir	nds to/blocks, dopamine	e receptors (on	postsynaptic membrane);	
		pre	events depolarization (d	of postsynaptic	membrane);	
		re	duces effect of dopami	ne;		
		R	reduces amount of dop	pamine		[max 2]
(c)			base deletion shift/alters <u>reading</u> fran	me (after muta	ion);	
	(so)) al	amino acids different	after mutation	;	
	3-D	sh	ape/tertiary structure,	of protein char	nged;	
	(wh	ere	as) 21 base-pair delet	ion, loses 7 an	nino acids/no frame shift;	
	(wh	ere	as) substitution, may	change only or	ne amino acid/may be silent;	[max 3]
(d)	incr	'ea	sed chances of, surviv	al/breeding/ma	iting;	
	pro	vid	es a <u>selective</u> advanta	ge;		
	alle	le p	passed on (to next gen	eration);		
	alle	le i	ncreases in frequency	over time;		
	nati	ura	selection;			[max 3]
						[Total: 15]

Q10.

6 (a) (i) 17.9;;

allow
$$\frac{125}{700}$$
 (× 100) or 17.8 for one mark [2]

- (ii) fluid can pass through glomerular capillaries because (max 3)
 - 1. fenestrations in capillary endothelium: A hole / pores / gaps
 - 2. basement membrane acts as a filter;
 - 3. no substances >68 000 MM can get through;
 - 4. no cells can get through;

fluid can pass through podocytes because

have, projections / AW;

gaps (between projections); A filtration slits

[4 max]

- (b) (i) microvilli: [1]
 - (ii) 1. produce ATP / provide energy;
 - for active transport of Na⁺;
 - out (of cell); [max 2]
 - (iii) mark first two answers any named ion / mineral ions;

vitamins;

amino acids;

glucose;

some urea; [max 2]

[Total: 11]

Q11.

```
Question 3
 (a)
 engulf / remove / breakdown red blood cells ;
 haemoglobin broken down;
 into haem and globin;
 iron removed (from haem);
 remainder passes to liver cells to form bile pigments;
 globin broken down into amino acids;
                                                                                            4 max
 (b)
 forms lipoproteins;
 stores fats;
 synthesises cholesterol;
 forms bile salts from cholesterol;
 converts glucose to fats;
 converts fats to fatty acids and glycerol;
 converts fats/glycerol to glucose;
                                                                                            3 max
(c)
diffuses into sinusoids;
dissolved/in solution;
in blood/ plasma;
via hepatic vein;
via renal artery;
                                                                                            2 max
(d)
(i)
less glucose / amino acids / fatty acids and glycerol / nutrients/more urea;
less oxygen / more carbon dioxide;
                                                                                            1
                                                                                     Total: 11
```

Q12.

Question 3

```
increases rapidly / sharply;
to a maximum of 7.0 - 7.5 / a rise of approximately 3;
then falls below original value;
recovering from 240 minutes / AW;
                                                                                           3 max
(b)
(i)
increase in glucose stimulates beta cells;
                                                                                           2
in islets of Langerhans / pancreas;
as glucose level drops;
beta cells no longer stimulated / insulin secretion stops;
Insulin is broken down;
                                                                                           2 max
(c)
secreted by alpha cells;
when blood glucose levels low;
cause glycogen to be converted to glucose;
raise blood glucose;
correct ref: negative feedback / idea that glucagons action is opposite to insulin;
                                                                                           3 max
                                                                                    Total: 10
```

Q13.

Question 5

```
(a)
      globin / protein to amino acids;
      haem to iron;
      iron stored / reused;
      residue / remainder to bile pigments / biliverdin / bilirubin ;
      pass into bile;
                                                                                        4 max
      excreted;
(b)
      NH2 / amino group removed;
      to ammonia;
      and keto acid / oxo produced;
      ref: ammonia to urea;
                                                                                        3 max
(c)
      alternative mark schemes
      1
             ethanol / alcohol;
                                                      R broken down
             oxidized;
             to ethanal / acetaldehyde in;
             ref: respiration / fat synthesis;
      OR
      2
             ammonia;
             combines with CO2;
             to produce urea;
             via ornithine cycle;
      OR
      3
             lactate;
             oxidised;
             by dehydrogenase;
             to pyruvate;
      OR
      4
             hydrogen peroxide;
             to water and oxygen;
             by catalase;
                                                      R hormones
                                                                                        3 max
```

Q14.

2	(a) 1	reference to Na ⁺ /K ⁺ pump;	
	2	active process/ATP used;	
	3	Na* (pumped) out and K* (pumped) in;	
	4	high Na⁺ outside and high K⁺ inside axon;	
	5	membrane slightly more leaky to K*/more K* leaks out than Na* leaks reference to some K* channels open;	in/
	6	inside more negative than outside;	3 max
	(b) 1	reference stimulation;	
	2	opening of Na ⁺ channels;	
	3	Na⁺ diffuses in (across axon membrane);	
	4	inside more positive than outside/outside more negative than inside;	
	5	potential across the membrane changes;	3 max
	(c) 1	reference to closing Na+ channels;	
	2	opening of K⁺ channels;	
	3	K⁺ diffuses out (across axon membrane);	
	4	(charge on the K ⁺) restores the membrane/resting potential;	
	5	reference to slight overshoot/hyperpolarisation;	
	6	reference K* channels close;	3 max
	(d) 1	electrical vs chemical;	
	2	(impulses) along nerve cells vs (hormones) through blood;	
	3	rapid vs slow;	
	4	response immediate vs relatively slow;	
	5	responses short lived vs long lived;	3 max

Q15.

Que	estion		Expected Answers	Marks
3	(a)		control / maintain, water / solute, concentration / potential; of, body fluids / internal environment / cells;	2
	(b)	1	B / C, lower ψ than A; accept C lower ψ than B accept ψ gets more negative as fluid moves down descending limb	
		2	comparative figs ;	
		3	water moves out by, diffusion / osmosis;	
		4	into, medulla tissue / tissue fluid ;	
		5	D / E, higher ψ than C; accept ψ gets less negative as fluid moves up ascending limb	
		6	comparative figs;	
		7	Na ⁺ / Ct, move out;	
		8	into, medulla tissue / tissue fluid ;	
		9	by active transport;	
		10	A and E same ψ / AW;	
			penalise once for no units	
			allow either 4 or 8	5 max
	(c)		receptor - hypothalamus ;	
			effector – pituitary gland / cells or walls of collecting duct; R anterior pituitary	2
			[Total: 9]	

Q16.

Qu	estion		Expected Answers		Marks
5	(a)		5.0 – 5.5 ; μm ;	accept correct values for mm, cm or m	2
	(b)	1 2 3 4 5 6 7 8	guard cells lose K*; ref. water potential gradi guard cells lose water; loss of turgor causes sto	supply / water loss / drought ; ent ;	4 max
	(c)		stomata / leaf; in still air / low wind spee	e to) difference in relative humidity inside and outside, ed, external water vapour remains close to stomata / AW; gradient / water potential gradient; [Total: 8]	2 max

Q17.

4	(a)	2	maintains, constant / stable, internal environment; R normal a change in, some parameter / example of parameter; (like blood glucose or temperature)	
		3	detected by a, sensor / receptor; brings about response via an effector / ref.corrective mechanism;	
		5	ref. return to, norm / set point;	
		6	named, receptor / effector;	[4 max]
	(b)	1	enzyme immobilised (in biosensor);	
		2	H ⁺ ions released (from gluconic acid);	
		3	give positive charge; current flows;	
		5	size of current proportional to concentration of, H* / glucose;	
		6	low reading (when blood tested) indicates, hypoglycaemia / low blood glucose concentration; A ora	[4 max]
			alternative points	
		2	platinum electrodes; detects oxygen concentration;	
		J	detects oxygen concentration,	
				[Total: 8]
Q1	8.			
8	(a)		C – depolarisation / inside (membrane) more positive ;	
	2.4		sodium ions / Na ⁺ , flow in ;	
			D – repolarisation / inside (membrane) more negative ; potassium ions / K⁺, flow out ;	
			E – hyperpolarisation / refractory period ;	
			more negative than resting potential;	[6]
	(b)		for A (ora for B)	
			(generator / receptor) potential (difference);	ro1
			does not overcome threshold;	[2]
				[Total: 8]

Q19.

7	(a)	G to	cells in centre;		
		R to	surrounding white area;		[2]
	(b)	ADH	G .		[1]
	(c)	(i)	(too) large / MM > 68 000 ;		
			to pass through basement membrane;	R gaps / wall	[2]
		(ii)	reabsorbed;		
			in proximal convoluted tubule;		[2]
		(iii)	1. more urea in urine than in filtrate / ora;	A comparative figs	
			2. water is reabsorbed;		
			3. in, distal convoluted tubule / collecting duct;		
			4. most urea stays in urine;	R all urea stays	
			5. other substances are reabsorbed;		[2 max]
					[Total:9]

Q20.

6	(a)	(i)	ignore refs to function islets of Langerhans;	
			scattered throughout pancreas / AW;	
			alpha and beta cells ; blood supply (to carry hormones away) ;	[3 max]
		(ii)	globular protein ;	[1]

1	7	good for people who have developed tolerance to animal insulin;	[3 max]
	6	less risk of, transmitting disease / infection ;	
	5	cheaper to produce in large volume / unlimited availability; R cheap to produce	
	4	ref. to ethical / moral / religious, issues ;	
	3	no / fewer, rejection problems / side effects / allergic reactions ;	
	2	(more) rapid response ;	
(b)	1	it is identical to human insulin / fits membrane receptor on (target) cells;	

Q21.

1 apical bud is source of auxin;

E5 less auxin left;

marks

auxin inhibits growth of side shoot; remove bud and auxin conc falls; 3 this allows cell, division / elongation, to take place (in side shoots); [3 max] (b) 267;; accept suitable working for one mark e.g. 110 - 30 (× 100) [2] accept 266.7 for one mark (c) days 2 to 8 D1 no increase in length with paste plus auxin (compared to control); E2 auxin moves from paste into plants; E3 inhibits growth; days 8 to 13 D4 increase in length occurs (with paste and auxin);

D6 supportive figs; e.g. two blue points on two days plus units or one red and

must have at least one D (description) and one E (explanation) to score 3

one blue point on same day plus units

[3 max] [Total: 8]

Q22.

7	(a)	1	removal / elimination, of waste products;	
		2	of metabolism;	
		3	(which are) toxic;	
		4	(or) substances excess (to requirements);	[2 max]
	(b)	1	homeostasis / AW;	
		2	change in water potential;	
		3	detected by (osmo)receptors;	
		4	in hypothalamus;	
		5	response via effector;	
		6	ADH released;	
		7	effect on collecting duct;	
		8	return to, norm / set point;	[4 max]
	(c)	1	blood diverted away from skin;	
		2	less sweating;	
		3	more water retained in body / high water potential in body;	
		4	less water reabsorbed from collecting duct / AW;	[2 max]
				[Total: 8]

Q23.

2	(a)		only three colours (for positive reactions) / only a small range; no measurement of actual concentration / no numerical value measured;	[2]
	(b)	(i)	peroxidase;	[1]
		(ii)	 (catalyses breakdown of hydrogen peroxide) to produce oxygen; chromogen, oxidised by / reacts with, (oxygen); produces range of colours; more, peroxide / oxygen produced, = greater change / darker colour; 	[2 max]
		(iii)	 to keep out, proteins / enzymes / polymer / named large molecule; R large molecules unqualified to prevent interference (to reactions); to prevent loss of, enzyme / chromogen; so still allowing reaction to occur; 	[2 max]
	(c)	(i)	 B has diabetes and A does not; A's, values / peak, lower because he secretes insulin or B's, values / peak, higher because, no / little, insulin; in A (insulin affects), liver / muscle, cells; increase in glucose uptake / increase in permeability of membranes (to glucose increase in use of glucose in respiration; (more) glucose converted to glycogen; in B because cells unresponsive to insulin; accept quoted values for lower and higher in mark point 2 	cose); [4 max]
(ii		(the	concentration of blood glucose), above which some glucose appears in	the urine /
(iii		2.	(at first), glucose reabsorbed by proximal convoluted tubule; ref. co transported with Na* / facilitated diffusion / protein carrier; above 180mg (100cm-3 glucose in blood) no further reabsorption; because carriers (in PCT) saturated / AW;	[3 max]

[Total: 15]

Q24.

7 (a)

	initial effect of	event on blood co	oncentration of
event	glucose	insulin	glucagon
meal containing sucrose	increase	increase	decrease
meal containing only protein	no effect	no effect	no effect ;
fasting	decrease	decrease	increase ;
exercising	decrease	decrease	increase ;
meal containing starch	increase	increase	decrease;

[4]

- (b) 1. affects liver cells; R muscle cells / liver and muscle cells

 - promotes glycogenolysis / AW;
 promotes use of <u>fatty acids</u> in respiration;

 - 4. promotes gluconeogenesis / AW;
 5. results in rise in (blood) glucose concentration;
 6. back to, norm / set point;

[3 max]

[Total: 7]

Q25.

- (a) 1. myelin sheath insulates <u>axon</u>;
 - idea of depolarisation / action potentials, only at nodes of Ranvier;
 ref. saltatory conduction / AW;

[2 max]

- (b) (i) 1. (impulse from TENS) causes release of endorphins;
 - endorphins attach to morphine receptors;
 - 3. slows / stops, ACh release;
 - 4. no / less, binding of ACh on receptors;

 - 5. in postsynaptic membrane;
 6. fewer / no, action potentials/ impulses, to pain centre (in brain);
 7. AVP; e.g. ref role of Ca²⁺

[4 max]

© University of Cambridge International Examinations 2011

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2011	9700	43

- (ii) any two from
 - 1. no need to use drugs;
 - no addiction to drugs;
 - 3. patient can control the treatment / AW;
 - 4. fewer / no, side effects;
 - 5. cheaper; [2 max]

[Total: 8]

Q26.

1 (a)

correct order	letter of stage
.1	E
2	н
3	A
4	J
5	С
6	F
7	В
8	G
9	D
10	I

HAJC all above F; HAJC in correct order;

BGDI all below F;

B G D I in correct order;

[4]

(b) (i) vesicles found only in presynaptic neurone /
ACh released only from presynaptic neurone or membrane;

receptor (proteins) found only on postsynaptic membrane;

[2]

- (ii) 1. allows more interconnection of nerve pathways / AW;
 - 2. for, memory / AW; ignore learning
 - 3. allows wider range of responses;
 - 4. AVP; e.g. summation

[2 max]

[Total: 8]

Q27.

1	(a)	A - mitochondrion ; B - post-synaptic membrane ;	
		C - myelin sheath / Schwann cell ;	[3]
	(b)	1 produces ATP; (1) R produces energy	
		any two from	
		2 (for) ACh production; 3 (for) vesicle formation;	
		4 (for) vesicle movement; 5 (for) exocytosis / described;	
		6 (for) functioning of ion pumps;	
		R calcium ions (2 max)	[3 max]
	(c)	1 fits into (membrane) receptors; 2 not broken down (by enzymes);	
		3 (so) <u>action potentials</u> generated for a long time (in post-synaptic neurone);	
		ignore ref to increased frequency of action potentials 4 AVP; e.g. causes release of other transmitters / stimulant and depressant /	variable
		response	[2 max]
		ι	Total: 8]
Q28.			
6	(a)	(i) greater speed (if myelinated);	
		comparative figures with units;	[2]
		(ii) larger diameter greater speed / ora;	
		comparative figures with units;	[2]
	(b	1. myelin insulates axon;	
		2. no myelin at nodes;	
		action potentials / depolarisation, only at nodes (of Ranvier);	
		local circuits set up between nodes;	
		action potentials 'jump' from node to node / saltatory conduction;	
		6. myelination prevents leakage of ions ; ora	[max 3]
	(c)	(i) 1. (sheath) treated as, 'foreign' / non-self;	
		2. ref. role of, antibodies / phagocytes / lymphocytes;	[2]
		(ii) 1. less insulation of axon;	
		2. action potentials, slow down / stop;	[2]
			[Total: 11]

Q29.

9	dormar	ncy;	
	embryo	;	
	aleuror	ne;	
	endosp	erm;	
	maltose	e;	
	ATP/6	energy;	
	transcr	iption / expression;	[7]
			[Total: 7]
Q30.			
6	(a) (i)	В;	
	(ii)	E;	
	(iii)	D;	
	(iv)	A+F; both required	[4]
	(b) (i)	Protoctista;	[1]
	(ii)	1. ref. to voltage-gated sodium ion channels / ref. ligand gated channels;	
		2. channels change shape (when, pd / voltage, changes);	
		open when, membrane depolarises / action potential arrives / neurotransi binds to receptors;	mitter
		4. sodium ions flood in ;	
		5. diffuses / down concentration gradient;	
		6. channels close when membrane, repolarises / potential reaches +30mV ;	
		7. ref. to sodium-potassium pump;	[max 3]
	(iii)	1. no, depolarisation / action potentials;	
		 idea of life-threatening paralysis / named consequence; e.g. cannot breathe / heart stops 	[2]
			[Total: 10]

Q31.

9	а	ctive transport / diffusion ;	
	n	nass;	
	p	hloem;	
	d	ominance;	
	d	ecrease / reduce / lower ;	
	d	ivision / mitosis / elongation ;	
	е	longation / division / mitosis ;	[7]
			[Total: 7]
Q32.			
6	(a)	channels; I voltage-gated	
		depolarised; A positive inside	
		receptor/generator;	
		threshold;	
		frequency; A number per second/rate R speed	[5]
	(b)	action potential stimulates neighbouring area of membrane ; AW	
		$\text{Na}^{\scriptscriptstyle +},$ moves sideways/attracted to areas at resting potential ; ~ A local circuit	
		causes, Na ⁺ ion channels to open/2 nd depolarisation;	
		(transmission) in one direction due to, hyperpolarisation/refractory period;	
		myelin sheath/Schwann cell;	
		sheath insulates, axon/dendron/neurone;	
		depolarisation/action potential, only at nodes of Ranvier/unmyelinated part ; $\ensuremath{\text{ora}}$	
		saltatory conduction/action potential 'jumps' from node to node;	[max 5]
			[Total:10]

Q33.

(a)	(i)	tendency of water molecules to move from one region to another/potential energy of water/ability of water to do work;	[1]
	(ii)	(water potential) becomes, lower/more negative;	[1]
	(iii)	posterior pituitary;	[1]
1	(iv)	for one mark; any 2 from urine sweat water vapour (from exhaled air) faeces bleeding tears	[max 1]
(b)	affe	ects collecting duct, (cells/wall); A distal convoluted tubule cells	
	bine	ds to receptors on cell surface membranes;	
	acti	vates series of enzyme controlled reactions;	
		osphorylase causes), vesicles/aquaporins, to move to cell surface membrane lumen side);	
	ves	icles/aquaporins, fuse with cell surface membrane;	
	cell	s/wall, more permeable to water;	
	wat	er moves out of lumen (of collecting duct);	
	dov	vn water potential gradient;	[max 5]
(c)	pro	duce, a lot of urine / dilute urine ;	
	deh	ydration/thirsty;	
	cra	mps/loss of salts;	[max 2]
			[Total:11]

Q34.

6 (a)

statement	letter
is myelinated	В
may form a synapse with an intermediate neurone	В
cell body lies within the CNS	М
dendron is usually longer than axon	s
cell body lies within spinal nerve	s
has many dendrites	В

all correct = 3 marks 3/4 correct = 2 marks

1/2 correct = 1 mark [3]

- (b) 1 Ca⁽²⁺⁾ channels open (in presynaptic membrane/ presynaptic knob);
 - 2 Ca2+ enter (pre)synaptic knob;
 - 3 vesicles contain, neurotransmitter/ACh;
 - 4 (vesicles) move towards/fuse with, presynaptic membrane;
 - 5 (ACh/neurotransmitter) released/exocytosis;
 - 6 (ACh/neurotransmitter) diffuses (across cleft);
 - 7 binds to receptors on postsynaptic membrane;
 - 8 Na(+) channels open;
 - 9 Na+ enters post-synaptic neurone;

penalise lack of mention of ions in mp2 and 9 once only

[max 5]

(c) hydrolyses/breaks down, ACh;

stops continuous production of action potentials (in post-synaptic neurone); [2]

[Total: 10]

Q35.

6 (a)

ion	role	type of cell
Fe ²⁺	oxygen transport/haemoglobin structure;	red blood cell
Na*	co-transport in the kidney	proximal convoluted tubule/epithelial;
Ca ⁺	synaptic transmission/described;	neurone

[3]

(b) receptor/generator; A threshold

[1]

- (c) 1 high blood pressure in glomerulus;
 - 2 (due to) greater diameter of afferent vessel; ora
 - 3 molecules pass through holes in (capillary) endothelium;
 - 4 <u>basement membrane</u> selectively permeable/only small molecules pass through <u>basement membrane</u>/large molecules unable to pass through <u>basement membrane</u>;
 - 5 less than 69 000 RMM;
 - 6 molecules pass between gaps in podocytes;
 - 7 enter renal capsule;

[max 4]

[Total: 8]

Section_B

1.

Question 6

(a)	
1 2 3 4 5 6 7 8 9 10 11 12 13	depolarisation/action potential; of presynaptic membran,/synaptic knob; opening calcium ion channels; calcium ions in; vesicles containing transmitter / acetylcholine; fuse with membrane; contents emptied into synaptic cleft / exocytosis; transmitter / acetylcholine diffuses across synaptic cleft; transmitter / acetylcholine binds to receptor; R protein channel on post synaptic membrane; Na¹ channels open / Na¹ enters; depolarises post synaptic membrane; action potential set up / impulse transmitted; breakdown / hydrolysis of transmitter / acetylcholine by enzyme / cholinesterase;
(b)	9 max
15 16 17 18 19 20 21 22 23 24	when blood glucose levels low; glucagon released from alpha cells (in pancreas); (acts on) liver (cells); breakdown of glycogen to glucose; use of fatty acids in respiration; production of glucose from other compounds / fats / amino acids / gluconeogenesis; liver releases glucose into blood; glucose levels rise / return to normal; switching off glucagon secretion; antagonistic to insulin;
	6 max

2.

Total:

15

6	(a)		auxin = IAA	
		1	auxin produced in apical bud / AW;	
		2	diffuses down stem;	
		3	active transport (cell to cell);	
		4	role of plasmodesmata;	
		5	also in phloem;	
		6	(auxin) inhibits growth of lateral buds;	
		7	plant grows up instead of branching out;	
		8	removal of apical bud allows lateral buds to grow;	
		9	AVP ; e.g. auxin concentrated in lateral bud / auxin in low amounts in lateral bud	
		10	AVP ; e.g. correct ref to effect of ABA / cytokinins	6 max
	(b)	11	seed absorbs water;	
		12	by osmosis;	
		13	gibberellin produced by embryo plant;	
		14	passes to aleurone layer;	
		15	switches on / activation, transcription enzyme genes / AW;	
		16	storage proteins broken down to amino acids;	
		17	stimulates synthesis / release of amylase;	
		18	amylase diffuses / moves into endosperm;	
		19	breaks down / hydrolyses starch to maltose;	
		20	maltose to glucose;	
		21	glucose diffuses / moves into embryo plant;	
		22	provides source of energy for growth of embryo plant;	9 max

3.

Total: 15

Question		on	Expected Answers	Marks
6	(a)	1	maintenance of constant / stable, internal environment;	
		2	despite changes in external environment;	
		3	negative feedback;	
		4	receptor and effector;	
		5	beta cells;	
		6	in islets of langerhans / pancreas ;	
		7	release insulin (into blood);	
		8	alpha cells stop releasing glucagon;	
		9	affects liver / muscle cells ;	
		10	increased permeability to glucose / absorption from blood;	
		11	increased use of glucose in respiration;	
		12	increase in conversion of glucose to glycogen;	
		13	stored in liver and muscles;	
		14	fall in blood glucose concentration / return to normal;	[8 max]
	(b)	15	low blood water content / water potential ;	
		16	detected by osmoreceptors;	
		17	in hypothalamus;	
		18	ADH produced / released ;	
		19	from posterior pituitary gland ;	
		20	target kidney;	
		21	cells of collecting duct;	
		22	binds to receptors;	
		23	vesicles with water permeable channels;	
		24	fuse with cell membrane;	
		25	cells more permeable to water / water passes into cells;	
		26	urine lower volume ;	
		27	higher concentration;	[7 max]
				[Total: 15

4.

- (a) 1. action potential / depolarisation, reaches presynaptic membrane;
 - calcium (ion) channels open / presynaptic membrane becomes more permeable to Ca2+;
 - 3. Ca2+ flood into presynaptic neurone; R membrane
 - 4. this causes vesicles of (neuro)transmitter to move towards presynaptic membrane;
 - 5. ref. acetylcholine / ACh;
 - 6. vesicle fuses with presynaptic membrane / exocytosis;
 - 7. ACh released into synaptic cleft;
 - 8. ACh diffuses across (cleft);
 - ACh binds to receptor (proteins) / AW;
 - 10. on postsynaptic membrane; R neurone
 - 11. proteins change shape / channels open;

 - 12. sodium ions rush into postsynaptic neurone; R membrane
 - 13. postsynaptic membrane depolarised;
 - 14. action potential / nerve impulse;
 - 15. AVP; e.g. action of acetylcholinesterase

[9 max]

(b) 16. ensure one-way transmission; 17. receptor (proteins) only in postsynaptic, membrane / neurone; 18. vesicles only in presynaptic neurone; ora 19. ref. adaptation; 20. increased range of actions; 21. due to interconnection of many nerve pathways; 22. ref. inhibitory synapses; 23. involved in memory / learning; due to new synapses being formed; 25. AVP; e.g. summation / discrimination [6 max] [Total:15] 10 (a) endocrine 1 hormones; 2 chemical messengers; A chemicals that transfer information ductless glands / (released) into blood; target, organs / cells; 5 ref. receptors on cell membranes; example of named hormone and effect; nervous 7 impulses / action potentials; R electrical, signals / current 8 along, neurones / nerve fibres; R nerves 9 synapse (with target) / neuromuscular junction; 10 ref. receptor / effector / sensory / motor, neurones; differences - endocrine 11 slow effect / ora; 12 long lasting effect / ora; 13 widespread effect / ora; 14 AVP; e.g. extra detail of synapse [8 max] (b) 15 IAA / plant growth regulator; 16 synthesised in, growing tips / apical buds / meristems; 17 moves by diffusion; 18 from cell to cell; 19 also, mass flow / in phloem; 20 stimulates cell elongation; R cell enlargement 21 inhibits, side / lateral, buds / growth; A inhibits branching 22 plant grows, upwards / taller; A stem elongates 23 IAA / auxin, not solely responsible; 24 interaction between IAA and other plant growth regulators; 25 AVP; e.g. role of ABA and lateral bud inhibition 26 AVP; e.g. cytokinins antagonistic to IAA / gibberellins enhance IAA [7 max]

5.

6.

10	(a)	1	selective reabsorption;	
		2	(pct cells have) villi / microvilli / large surface area;	
		3	(pct cells have) many mitochondria;	
		4	Na* leave pct cells ;	
		5	by active transport;	
		6	Na+ concentration falls in (pct) cells / Na+ concentration gradient;	
		7	Na* (diffuse) from lumen into (pct) cells ;	
		8	through, transporter / carrier, proteins; ignore channel proteins	
		9	cotransport;	
		10	of, glucose / amino acids / vitamins / chloride ions;	
		11	(from pct cells) into intercellular fluid; linked to 10	
		12	(then) diffusion into blood; linked to 10	
		13	(normally) all glucose reabsorbed;	
		14	some water reabsorbed;	
		15	some urea reabsorbed;	
		16	AVP; e.g. creatinine secreted into lumen	[8 max]
			accept sodium ions but reject sodium or Na penalise once only	

(b) 17 ADH affects collecting duct; 18 binds to receptor on membrane; 19 increase membrane permeability (to water) / more water channels; 20 ref. enzyme controlled reactions; 21 produces (active) phosphorylase; 22 (which causes) vesicles with, water channels / aquaporins; must be linked to 23 23 to, move to / fuse with, (plasma) membrane; 24 more water flows out of collecting duct; 25 down / along, water potential gradient; 26 (then) into blood; 27 urine (more) concentrated / small volume of urine; 28 ref. negative feedback; 29 AVP; e.g. role of loop of Henle in creating water potential gradient movement of urea increases water potential gradient [7 max] [Total: 15] 10 (a) 1 renal/Bowman's, capsule; ref. podocytes; (proximal convoluted tubule/distal convoluted tubule/capsule) in cortex; proximal convoluted tubule; loop of Henle; 6 (loop) in medulla; distal convoluted tubule; afferent arteriole; glomerulus; 10 efferent arteriole; 11 capillary network around/proximal convoluted tubule/loop/distal convoluted tubule; 12 collecting duct;

7.

accept points on a labelled diagram

[7 max]

(b) 13 endothelium of, blood capillaries/glomerulus; 14 more/large, gaps between endothelial cells; 15 podocytes; 16 large gaps between podocytes/filtration slits; 17 <u>basement membrane</u>, selective barrier/acts as a filter; 18 prevents, large protein/RMM > 68 000, passing through; 19 no cells pass through; 20 named molecule which is filtered; e.g. urea/water/glucose/uric acid/creatinine/ Na*/K*/Cl*; 21 high, blood/hydrostatic, pressure in glomerulus; 22 afferent arteriole wider than efferent arteriole; 23 lower pressure in, renal/Bowman's, capsule; 24 fluid forced into capsule/ultrafiltration; [8 max] [Total: 15] 10 (a) 1 nucleus in cell body; (long) dendron; R plural 3 (shorter) axon; many mitochondria (in cell body); many RER/nissl's granules, (in cell body); synaptic knobs; 7 detail of synaptic knob; (terminal) dendrites; Schwann cells; 10 detail of myelin sheath; 11 nodes of Ranvier;

8.

[7 max]

accept points on labelled diagram

(b) 12 Na⁺ channels open; A sodium channels 13 Na enter cell; R enter membrane 14 inside becomes, less negative/positive/+40mV or membrane depolarised; 15 Na channels close; A sodium channels 16 K channels open; A potassium channels 17 K+ move out (of cell); R of membrane 18 inside becomes negative or membrane repolarised; A negative figure 19 local circuits/description; 20 (myelin sheath/Schwann cells) insulate axon/does not allow movement of ions; 21 action potential/depolarisation, only at nodes (of Ranvier)/gaps; 22 saltatory conduction/AW; 23 one-way transmission; 24 AVP; e.g. hyperpolarisation/refractory period [8 max]

[Total: 15]

9.

(a) endocrine

- hormones;
- 2. chemical messengers; A chemicals that transfer information

- ductless glands / (released) into blood;
 target, organs / cells;
 ref. receptors on cell membranes;
 example of named hormone and effect;

nervous

- 7. impulses/ action potentials; R electrical, signals / current
- along, axon / neurones / nerve fibres; R nerves R across
- synapse (with target) / neuromuscular junction;
- ref. receptor / sensory neurones;
- 11. ref. effector / motor neurones;

differences - endocrine

- 12. slow effect / ora;
- 13. long lasting effect / ora;
- 14. widespread effect / ora;
- AVP; e.g. extra detail of synapse / hormone changes triggered within cells [8 max]
- (b) 16. IAA / plant growth regulator; R plant hormone
 - 17. synthesised in, growing tips / apical buds / meristems; R root tip
 - moves by diffusion;
 - 19. moves by active transport;
 - 20. from cell to cell;
 - 21. also, mass flow / in phloem;
 - 22. stimulates cell elongation; R cell enlargement
 - 23. inhibits, side / lateral, buds / growth; A inhibits branching
 - 24. plant grows, upwards / taller; A stem elongates
 - 25. auxin not solely responsible or interaction between auxin and other plant growth regulators;
 - 26. AVP; e.g. role of ABA and lateral bud inhibition
 - 27. AVP; e.g. cytokinins antagonistic to IAA / gibberellins enhance IAA [7 max]

[Total: 15]

10.

- 11 (a) accept ABA for abscisic acid 1. stress hormone; 2. plant secretes ABA in, high temperatures / dry conditions; 3. ABA binds to receptors; on plasma membranes of guard cells; inhibits proton pump / H⁺ not pumped out of cell; high H⁺ conc / positive charge, inside cell; K⁺ diffuses out of cell; 8. water potential of cell increases; A increase in solute potential 9. water moves out of cell by osmosis; volume of guard cells decreases; 11. guard cells become flaccid; response very fast; [8 max] (b) 13. (barley) seed is, dormant / metabolically inactive; 14. seed absorbs water; 15. embryo produces gibberellin; gibberellin stimulates aleurone layer; 17. to produce amylase; 18. amylase hydrolyses starch; 19. in endosperm; 20. to maltose / glucose; 21. embryo uses sugars for respiration; 22. energy used for growth; 23. gibberellins affect, gene / transcription of mRNA, coding for amylase; [7 max] [Total: 15]
- 11.
 - 10 (a) many of these mps can be given from a labelled diagram
 - 1. (outer) cortex;
 - 2. medulla;
 - pelvis;
 - renal artery ;
 - renal vein ;
 - nephron / (kidney) tubule ;
 - renal capsule / proximal convoluted tubule (pct) / distal convoluted tubule (dct), in cortex
 - 8. loop of Henle / collecting duct (cd), in medulla;
 - 9. glomerulus;
 - afferent & efferent arterioles;
 - capillary network, surrounds tubule / in medulla;
 [6 max]

(b) mechanisms

- 12. active transport; A actively pumped / uses ATP
- 13. Na+, out of pct cells / into blood;
- 14. (sets up) Na+ ion gradient;
- 15. facilitated diffusion;
- 16. using protein carrier; A transport protein
- 17. cotransport (from lumen to pct cell);
- 18. of, glucose / amino acids / ions;
- 19. osmosis;
- 20. down water potential gradient;
- 21. diffusion (in correct context);
- 22. down a concentration gradient; max 7

adaptations

- microvilli; A brush border
- 24. many mitochondria;
- 25. tight junctions;
- 26. folded, basal membrane / described;
- 27. many, transport proteins / cotransporters / pumps;
- 28. AVP; e.g. many aquaporins

[9 max]

[Total: 15]

10 (a) 1. (homeostasis is) maintenance of, constant / stable, internal environment; 2. irrespective of changes in external environment; negative feedback; 4. receptor /appropriate named cell, detects change in, parameter / blood glucose concentration; (receptors are) β / α, cells; 6. in, Islets of Langerhans / pancreas; insulin / glucagon, released ; action taken by effector / correct action described (liver / muscle, cell); 9. restoration of, norm / set point / AW; 10. ref. fluctuation around the norm; [6 max] (b) endocrine 11. hormones; 12. chemical messengers; A chemicals that transfer information 13. ductless glands / (released) into blood; target, organs / cells ; 15. ref. receptors on cell membranes; example of named hormone and effect; nervous 17. impulses / action potentials; R electrical, signals / current 18. along, neurones; R nerves synapse (with target) / neuromuscular junction; 20. ref. receptor / effector or sensory / motor, neurones; differences - endocrine 21. slow effect / ora : 22. long lasting effect / ora; 23. widespread effect / ora; 24. AVP; e.g. extra detail of synapse [9 max] [Total: 15]

Question 7

```
(a)
        Explain the source and importance of removing nitrogenous waste products
        from the body.
                                                                                    [6]
(b)
        Describe how the kidney removes metabolic wastes from the body.
                                                                                    [9]
        deamination;
(a)
        ref. to ornithine cycle;
        ref. to not all urea / produced each day / always some present;
        ref. to urea;
        ref. to creatinine and uric acid;
        and ammonium ions;
        produced in liver;
        continuously / from excess amino acids;
        toxic;
        if allowed to accumulate;
        ref. to potential damage to tissues;
        ref. to not all urea / that produced each day;
                                                                               [6 max]
(b)
        ultrafiltration;
        of blood in glomerulus;
        forming filtrate in Bowman's capsule;
        of kidney tubule;
        soluble molecules;
        including urea;
        and ammonium ions pass into filtrate;
        concentrated by removal of water (in collecting ducts);
        ref. to formation of ammonium ions in distal convoluted tubule;
        from ammonia and protons;
        ref. to removal of metabolic water (as a waste product);
        and osmoregulation;
        by collecting ducts;
        ref. formation of urine;
        ref. to distal convoluted tubule excrete excess acid;
                                                                               [9 max]
```

Total [15]

(a)		potentials.		
(b)		Explain, using a named example, how sensory receptors in mammals of	onvert	[9]
		energy into action potentials.		
(a)	1 2 3 4 5 6 7 8 9 10 11	myelin sheath / schwann cell; insulates, axon / dendron; impermeable to Na* / K*; depolarisation only at nodes of Ranvier; ref. local circuits; action potentials 'jump' from node to node; saltatory conduction; speed increased by 50 times / 0.5 ms-1 to 100 ms-1; axons with large diameter / giant axon; reduce resistance; elongated, axon / dendron / neurone;	6 max	
(b)	12 13 14 15 16 17 18 19 20 21 22 23 24	K ⁺ leaves cell; depolarisation; receptor / generator potential; greater than threshold leads to, action potential / impulses;	obrane 9 max	

Total 15

10 (a) most of these points can be taken from an annotated diagram nucleus in cell body; (short), dendrites / dendrons; 3 (axon) much longer than, dendrite / dendrons; must be stated / not on diagram cell body contains, mitochondria / RER / golgi / groups of ribosomes; many mitochondria at, synaptic knob / terminal branch; synaptic vesicles; neurotransmitter / named neurotransmitter; linked to 7 Schwann cells / myelin sheath; 10 nucleus in Schwann cell; R nucleus in myelin sheath 11 node of Ranvier; 12 AVP; e.g. motor end plate / (dendrites) have receptors (for neurotransmitters) [7 max] 13 Na+ channels open; A sodium channels 14 Na+ enter cell; R enter membrane inside becomes, less negative / positive / +40mV / depolarised ; 16 Na+ channels close; A sodium channels K+ channels open; A potassium channels K+ move out (of cell); R of membrane inside becomes, negative / repolarised; A negative figure [5 max] local circuits / description; (myelin sheath / Schwann cells) insulate axon / does not allow movement of ions; 22 action potential / depolarisation, only at nodes (of Ranvier) / gaps; 23 saltatory conduction / AW; 24 one-way transmission; 25 AVP; e.g. hyperpolarisation / refractory period related to 24 [3 max] [Total: 15]

10	(a)	1	strong stimulus in receptor / AW;	
		2	action potential / impulses, along sensory neurone;	
		3	dorsal root of spinal nerve ;	
		4	into spinal cord;	
		5	synapse with intermediate neurone;	
		6	(then) motor neurone;	
		7	action potential / impulses, to effector;	
		8	action potential / impulses, to brain;	
		9	response; e.g. knee jerk 5 max can be on diagram	
		10	fast / immediate ;	
		11	stops / limits, damage / danger ;	
		12	automatic / no conscious thought;	
		13	innate / stereotyped / instinctive ;	[7 max]

			[Total: 15]
	25	speed in non-myelinated neurones about 0.5 ms ⁻¹ ;	[8 max]
	24	up to 100 ms ⁻¹ ;	
	23	increases speed / reduces time, of impulse transmission;	
	22	saltatory conduction;	
	21	action potentials 'jump' between nodes;	
	20	local circuits between nodes ;	
	19	depolarisation (of axon membrane) cannot occur where there is sheath / only at nodes of Ranvier ;	
	18	Na* / K*, cannot pass through sheath / can only pass through membrane at nodes ;	
	17	(sheath) insulates axon (membrane);	
	16	sheath mainly lipid ;	
	15	wrap around axon ;	
(b)	14	Schwann cells;	

10	(a)	1	action potential / depolarisation, reaches presynaptic membrane;	
		2	(Ca ²⁺) channels open in <u>presynaptic membrane</u> / <u>presynaptic membrane</u> becomes more permeable to (Ca ²⁺); R calcium / Ca / Ca ⁺	
		3	Ca ²⁺ (flood) into presynaptic, neurone / knob; R membrane	
		4	(this causes) vesicles of, acetylcholine / ACh;	
		5	(to) move towards presynaptic membrane / (to) fuse with presynaptic membrane;	
		6	ACh released into synaptic cleft / exocytosis of ACh;	
		7	ACh diffuses across (cleft);	
		8	ACh binds to receptor (proteins) / AW;	
		9	on postsynaptic membrane;	
		10	proteins change shape / channels open ;	
		11	sodium ions (rush) into postsynaptic neurone ; R membrane	
		12	postsynaptic membrane depolarised;	
		13	action potential / nerve impulse ;	
		14	action of acetylcholinesterase;	[9 max]
	(b)	15	ensure one-way transmission;	
		16	receptor (proteins) only in postsynaptic, membrane / neurone; ora	
		17	vesicles only in presynaptic neurone; ora	
		18	adaptation / ACh amount reduces due to overuse of synapse;	
		19	wide range of responses;	
		20	due to interconnection of many nerve pathways;	
		21	inhibitory synapses affect other synapses;	
		22	involved in memory / learning;	
		23	due to new synapses being formed;	
		24	summation / discrimination ;	[6 max
\exists				[Total: 15

Q18.

- 11 (a) 1. axon phospholipid bilayer impermeable to K⁺ / Na⁺;

 - sodium potassium pump;
 detail of sodium-potassium pump; e.g. transmembrane / globular / ATP binding site
 active process / ATP used / energy needed;

 - 5. 3 Na+ (pumped) out / 2 K+ (pumped) in ;
 - K⁺ diffuse out / Na⁺ diffuse in ;
 - 7. through, protein channels transport proteins;
 - more K⁺ channels open than Na⁺ channels;
 - therefore, membrane more permeable to K⁺ or more K⁺ leave than Na⁺ enter (axon);
 - 10. inside relatively more negative than outside;
 - 11. -65mV; A-70mV
 - idea of leaking K⁺ responsible for resting potential / AW;
 - electrochemical gradient;
 - 14. voltage-gated channels closed;

[9 max]

(b) general

- 15. respond to stimuli / AW;
- (some) receptors are the ends of sensory neurones;
- 17. (some) receptors are cells;
- 18. they are energy transducers;
- 19. stimulus causes sodium ion channels to open;
- sodium ions enter cell;
- 21. depolarisation;
- 22. receptor / generator, potential;
- 23. if (receptor potential) greater than threshold then action potential generated / all or nothing principle described;
- increased stimulus strength leads to increased frequency of action potentials;

examples - allow any two below

receptor	form of energy detected		
rods / cones	light;		
taste buds / olfactory cells	chemical;		
Pacinian \ Meissner's, corpuscle	pressure / touch ;		
Ruffinis endings	heat;		
proprioreceptors	mechanical displacement;		
hair cells in semicircular canals	movement;		
hairs cells in cochlea	sound;		

[max 2] [6 max]

[Total: 15]

```
10 (a) 1 PII absorbs light;
        2 enzyme (in PII) involved ;
        3 to break down water / AW;
        4 2H<sub>2</sub>O → 4H<sup>+</sup> + 4e<sup>-</sup> + O<sub>2</sub>;
        5 <u>oxygen</u> is produced;
        6 used by cells for (aerobic) respiration;
        7 or released (out of plant) through stomata;
        8 protons used to reduce NADP :
        9 with electrons from PI;
        10 reduced NADP used in, light independent stage / Calvin cycle ;
        11 to convert GP to TP
        12 electrons also used in ETC;
        13 to release energy for photophosphorylation ;
        14 to produce ATP
        15 electrons (from PII) go to PI;
        16 ref. re-stabilise PI;
                                                                                            [10 max]
(b) 16 gibberellin is a, plant growth regulator / plant hormone / plant growth substance;
    17 stimulates cell division;
    18 stimulates cell elongation;
    19 detail of cell elongation; e.g. changes plasticity of cell wall
    20 plant grows tall;
    21 apply gibberellin to dwarf plants and they grow taller / gibberellin promotes bolting of
         some rosette plants;
    22 ref. inactive and active forms;
    23 dwarf plants, lack active form / have inactive form, of gibberellin;
    24 (dominant) allele causes synthesis of enzyme;
    25 (enzyme) catalyses the production of the active form of gibberellin;
    26 recessive allele only inactive form of gibberellin formed / dominant allele results in active
         form of gibberellins;
    27 AVP ; e.g. ref. to different forms of gibberellins / there is interaction between / gibberellin
         and other plant growth regulators
                                                                                             [5 max]
```

[Total: 15]

- (a) 1. glucagon binds to receptors in cell surface membrane (of liver cell); receptor changes conformation ; G-protein activated ; adenylate cyclase activated ; ATP converted to cyclic AMP / cyclic AMP made ; (cyclic AMP is) second messenger; (cyclic AMP) activates kinase protein ; ref. enzyme cascade ; 9. ref. phosphorylase enzyme(s) / glycogen phosphorylase; glycogen broken to glucose; 11. glucose, diffuses / passes out, of (liver) cell (into the blood);
 - through GLUT2 transporter proteins ;

13. AVP; e.g. ref. to stimulating gluconeogenesis [max 9]

(b) method

- stick dipped into urine ;
- glucose oxidase (on stick) reacts with glucose (in urine);
- forms gluconolactone ;
- and hydrogen peroxide;
- (hydrogen peroxide) reacts with chromogen (on stick);
- catalysed by peroxidase enzyme;
- colour produced matched against chart; (max 4)

- 8. electronic biosensor does not involve colour matching; ora A ref to subjectivity of results from dip sticks
- gives a specific reading, not a range of values (if not an exact match to a colour); ora
- biosensor gives a digital reading so no need to interpret a colour chart;
- 11. biosensor can be re-used again; ora (max 3)

[max 6]

Total: 15