<u>Online Classes : Megalecture@gmail.com</u> <u>www.youtube.com/megalecture</u> <u>www.megalecture.com</u>

Online Classes : Megalecture@gmail.com www.youtube.com/megalecture

www.megalexsuce/cran

Rotating

scale (0.01mm

narkinas

-50

Scale

<u>1. General Tips</u>

- If range given e.g. 0 to 20, try to get a measurement from a large spread of the range.
- Record all measurements needed to obtain final value including intermediary steps
- For example, if a length l is derived from $l = l_2 l_1$ then l_1 and l_2 should appear in the table.
- Column labelled with the name of symbol and units

<u>2. Micrometre Screw Gauge</u>

Measures objects up to 0.01mm

- Place object between anvil & spindle
- Rotate thimble until object firmly held by jaws
- Add together value from the main scale and rotating scale

<u>3. Vernier Scale</u>

Measures objects up to 0.1mm

- Place object on the rule
- Push the slide scale to the edge of object.
- The sliding scale is 0.9mm long & is divided into 10 equal divisions.
- Check which line division on sliding scale matches with a line division on the rule
- Subtract the value from the sliding scale (0.09 × *Divisions*) by the value from the rule.

4. Systematic and Random Errors

• Systematic error:

- $\circ\,$ Constant error in one direction; too big or too small
- Cannot be eliminated by repeating or averaging
- o If systematic error small, measurement accurate
- Accuracy: refers to the degree of agreement between the result of a measurement and the true value of quantity.

• Random error:

- $\circ\,$ Random fluctuations or scatter about a true value
- Can be reduced by repeating and averaging
- \circ When random error small, measurement precise
- Precision: refers to the degree of agreement of repeated measurements of the same quantity (regardless of whether it is correct or not)

4. Uncertainties

For a quantity $x = (2.0 \pm 0.1)mm$

- Absolute uncertainty = $\Delta x = \pm 0.1 mm$
- Fractional uncertainty = $\frac{\Delta x}{r} = 0.05$
- Percentage uncertainty = $\frac{\Delta x}{x} \times 100\% = 5\%$
- Combining errors:
- When values **added or subtracted**, add absolute error If $p = \frac{2x+y}{3}$ or $p = \frac{2x-y}{3}$, then $\Delta p = \frac{2\Delta x + \Delta y}{3}$
- When values **multiplied or divided**, add % errors
- When values are **powered** (e.g. squared), multiply percentage error with power

If
$$r = 2xy^3$$
 or $r = \frac{2x}{y^3}$, then $\frac{\Delta r}{r} = \frac{\Delta x}{x} + \frac{3\Delta y}{y}$

Instrument	Uncertainty
Ruler	0.1 <i>cm</i>
Protractor	2°
Stop watch	Max - Min
Ammeter	2

5. Treatment of Significant Figures

- Actual error: recorded to only 1 significant figure
- Number of decimal places for a calculated quantity is equal to the number of decimal places in the actual error

Quantity	Justification	
s.f. of the calculated	To s.f. of measure value	
quantity		
s.f. of measure value	To the precision of the	
	instrument	

• Always give calculated quantity s.f. equal or one less than the measured value

Online Classes : Megalecture@gmail.com www.youtube.com/megalecture

www.megalexsicc/crap

<u>6. Errors in Experiments</u>

Error	Improvement			
Water-relate	d experiment			
Hard to see surface due to refraction/meniscus effect	Use coloured liquid			
Labels get wet/ink runs	Use waterproof labels/ink			
Ball related experiment				
Locating the centre of the	Mark the centre of the ball			
ball when reading the rule	with a marker			
Inconsistent bounce	Use a flat surface			
Fast-moving object experiment				
Difficult to judge when the ball is at e.g. max displacement	Use sensor or record with camera frame by frame			
Hard to see when an object	Use a pressure sensor to			
strikes the floor	stop the timer			
Difficult to judge end point	Mark distance with lines			
Difficulty in deciding the toppling point	Move by increments/hold with newton-meter and tilt until $F = 0$			
Releasing object from rest experiment				
Difficulty in releasing	Use a remote-controlled			
object due to e.g. force	clamp/electromagnet			
Rod falls sideways	Keep rod vertical/use guide			
Oscillation experiment				
Time taken (T) too short or large uncertainty in T	Time object at max disp. with motion sensor/video & playback in slow motion /time more oscillations			
Object doesn't swing freely/ friction between pivot and object	Make hole bigger/bush or bearing idea			
Non-uniform oscillation	Turn off the fan (light object)			
Oscillations die out quickly	Increase object thickness			
Difficult to judge end/start/ complete swing	Use a fiducial marker			
Retort stand moves	Add weights/clamp			
Electricity e	experiment			
Resistance/current fluctuating	Clean contacts			
Voltmeter scale not sensitive enough	Use digital voltmeter			
Wires not straight	Tape to ruler/hang weights off end/clamp wire			

<u>Force ex</u>	<u>periment</u>		
Reach max force suddenly	Force sensor w/data logger		
Weights move off the nath	Fix cotton loop to rule e.g.		
	tape, glue		
Pulley experiment			
Masses hit each other	t each other Use larger pulley		
Friction at pulley	Lubricate pulley		
Uncertain starting position	Clamp / electromagnetic		
Moment experiment			
	Project cylinder over bench		
Rule hits bench	/ elevate apparatus		
Ruler slips on support	Glue support to block		
Magnetism	experiment		
Effoct of currounding of	Use various materials to		
chect of surrounding e.g.	separate magnets & test if		
glass/magnetic materials	material affects results		
<u>Bench/ Ramp (Surfac</u>	<u>e) related experiment</u>		
	Ensure the same section of		
rougher / surface upeyer	the board used in each		
Tougher / surface uneven	expt.		
Board slips/unstable	Clamp/fix to bench with		
/supporting block topples	tape/blue-tack		
Difficult in pulling in line	use (long) piece of string to		
with the board	connect the newton-meter		
	to the block		
<u>Heat loss</u>	experiment		
Heat lost through sides	Lag/insulate/polystyrene		
and /or Bottom	container		
Thormomotor bulb not	Use a larger volume of		
completely immersed	thermocouple/small		
completely initialised	temperature sensor		
Resistor gives heat when			
switched off/temp rises	Wait until temp. reaches		
even after switching off	max before reading		
Terminal velo	citv experiment		
May not have reached	Time over three markers		
terminal velocity	constant		
Light depende	ent experiment		
External light affects			
(LDR)	Conduct expt. In dark room		
Length of tube changes	Maka pro alata in the tube		
when paper added	wake pre-slots in the tube		
Cylinders not aligned	Align on desk/rule		
Difficult to hold together	Tape/clamp together		

MEGALECTUR www.megalecture.com

7. Errors in Apparatus

Error	Improvement	
Meter rule		
	Put coloured paper behind/	
Parallax error	eye-level perpendicular	
	/extend mark to wood	
	/shadow projection	
Difficult to hold rule still	Mount ruler in stand	
Difficult to measure, since	Clamp rule / ensure the	
the ruler moves	rule is vertical using a set	
	square	
Newton meter		
Difficult to pull Newton	Ensure force parallel to	
meter parallel to ruler/	ruler e.g. use a long	
bench	string/pulley and weights	
Difficult to judge reading	Use Newton meter with a	
on meter when detached:	'max hold' facility/video &	
ruler moves suddenly/	playback or freeze frame/	
Force $= 0$ after	use force sensor & logger	
detachment		
Difficult to zero Newton-	Use system of pulley &	
meter when horizontal	weights/use force sensor	
	with data-logger	
Objects with an unfixed o	liameter (Circular objects)	
Difficult to measure	Use Vernier callipers or	
diameter since the object is	micrometre screw gauge	
flexible/not circular	to measure average	
	diameter	
Difficult to form perfect	Method to make uniform	
sphere/diameter varied	spheres/discs e.g. moulds	
<u>Proti</u>	<u>ractor</u>	
Protractor "wobbles" /	Use protractor with	
difficult to measure;	horizontal line level to	
container curved at the	table top/freestanding or	
bottom/difficult to line up	clamped protractor	
Parallax error in θ	Use mirror scale	

• General:

• Error: two readings not enough

o Improvement: take several readings and plot a graph

<u>Online Classes : Megalecture@gmail.com</u> <u>www.youtube.com/megalecture</u> <u>www.megalecture.com</u>

