

Q1.

	5	(a)		the (value of the) direct current that dissipates (heat) energy at the same rate (in a resistor) allow 'same power' and 'same heating effect'	M ²	
		(b)		$\sqrt{2}I_{rms} = I_{0}$	B	1 [1]
			(i) (ii)	power $\propto I^2$ or $P = I^2R$ or $P = VI$ ratio = 2.0 (allow 1 s.f.) advantage: e.g. easy to change the voltage disadvantage: e.g. cables require greater insulation	C' A' B'	1 [2] 1
				rectification – with some justification	B1	[2]
		*	(i) (ii)	3.0 A (allow 1 s.f.) 3.0 A (allow 1 s.f.)	A1 A1	
Q2.						
4	(a)	N _S /N _F	$_{\rm P} = V$	out = $9/\sqrt{2}$ or peak input = $230\sqrt{2}$ $\frac{8}{V_P}$ → 140 turns	C1 C1 A1	[3]
	(b)			iodes correctly positioned regardless of output polarity correct output polarity (all 'point to left')	M1 A1	[2]
		(ii) c	capac	citor shown in parallel with R	B1	[1]
	(c)	(i) ti	ime t	1 to time t ₂	B1	[1]
				n: same peak values reduced and reasonable shape	M1 A1	[2]
Q3.				1.		
6	(a)			des correct to give output, regardless of polarity for correct polarity	M1 A1	[2]
	(b)	N _S / N V ₀ =	√2 ×	V _{rms}	C1 C1	
		ratio		9.0 / ($\sqrt{2} \times 240$) 1/38 or 1/37 or 0.027	A1	[3]

Q4.

7	(a)	eith or	that p	alue of steady / constant voltage produces same power (in a resistor) as the alternating voltage emating voltage is squared and averaged m.s. value is the square root of this averaged value	M1 A1 (M1) (A1)	[2]
	(b)	(i)	220 V		A1	[1]
		(ii)	156 V		A1	[1]
		(iii)	60 Hz		A1	[1]
	(c)	pov	ver = V _{ms} = 156 ² / 15	² /R	C1	
			= 156 / 15 16 Ω	500	A1	[2]
Q5.						
6	(a)	(i)	to concen	trate the (magnetic) flux / reduce flux losses	B1	[1]
	(4)	(ii)		flux (in core) induces current in core	M1	191
				n core give rise to a heating effect	A1	[2]
	(b)	(i)		uced proportional to ange of (magnetic) flux (linkage)	M1 A1	[2]
		(ii)	e.m.f. / p.o	flux in phase with / proportional to e.m.f. / current in primary coil d. across secondary proportional to rate of change of flux of supply not in phase with p.d. across secondary	M1 M1 A0	[2]
	(c)	(i)		power (transmission), high voltage with low current urrent, less energy losses in transmission cables	B1 B1	[2]
		(ii)	voltage is	easily / efficiently changed	B1	[1]
Q6.						
6	(a) (i)	$2\pi f = 380$ frequence	y = 60 Hz	C1 A1	[2]
		(ii)	I _{RMS} × √		C1	
			$I_{\text{RMS}} = 9.$ = 7.		A1	[2]
	(b) po	wer = I^2R	_	C1	
			= 400 / 7.0 = 8.2 Ω	2	A1	[2]

Q7.

whatsapp: +92 323 509 4443, email: megalecture@gmail.com

6	6 (a) (i)	peak voltage = 4.0 V	A1	[1]
	(ii)	r.m.s. voltage (= $4.0/\sqrt{2}$) = 2.8 V	A1	[1]
	(iii)	period $T = 20 \text{ ms}$ frequency = 1 / (20 × 10 ⁻³) frequency = 50 Hz	M1 M1 A0	[2]
	(b) (i)	change = $4.0 - 2.4 = 1.6 \text{ V}$	A1	[1]
	(ii)	$\Delta Q = C\Delta V \text{ or } Q = CV$ = 5.0 × 10 ⁻⁶ × 1.6 = 8.0 × 10 ⁻⁶ C	C1 A1	[2]
	(iii)	discharge time = 7 ms current = $(8.0 \times 10^{-6}) / (7.0 \times 10^{-3})$ = $1.1(4) \times 10^{-3}$ A	C1 M1 A0	[2]
		erage p.d. = 3.2 V istance = $3.2 / (1.1 \times 10^{-3})$ = 2900Ω (allow 2800Ω)	A1	[2]
Q8.				
6		o reduce power loss in the core due to eddy currents/induced currents	B1 B1	[2]
	(ii) 6	either no power loss in transformer input power = output power	B1	[1]
	(b) eithe		C1	
	or	peak voltage across load $\sqrt{2}$ 243 =340 V peak voltage across prinary coil = $9.0 \times \sqrt{2}$	A1 (C1)	[2]
		peak voltage across load = 12.7 × (8100/300) = 340 V	(A1)	

Q9.

M1

[4]

[1]

(a) (induced) e.m.f. proportional to rate

		of	change	e of (magnetic) flux (linkage)	A1	[2]
	(b)	(i)	posit	ive terminal identified (upper connection to load)	В1	[1]
		(ii)	ratio (V _P = (ratio	$\sqrt{2} \times V_{\text{RMS}}$ = 240 $\sqrt{2}$ / 9 = 38 = V_{RMS} / $\sqrt{2}$ gives ratio = 18.9 and scores 1/3) = 240 / 9 = 26.7 scores 1/3) = 9 / (240 / $\sqrt{2}$) = 0.0265 is inverted ratio and scores 1/3)	C1 C1 A1	[3]
	(c)	(i)		(output) p.d. / voltage / current does not fall to zero range of (output) p.d. / voltage / current is reduced (any sensible answer)	В1	[1]
		(ii)	sketo	ch: same peak value at start of discharge correct shape between one peak and the next	M1 A1	[2]
Q10.						
4	(a)			single diode	[2]
	(b)	(i)1	5.4 V (allow \pm 0.1 V)		
		(i)2	V = iR $I = 5.4/1.5 \times 10^3$		
		(i)3	time = 0.027 s	[4	4]
		(ii)1	Q = it = 3.6 x 10 ⁻³ x 0.027		

line: reasonable shape with less ripple...... B1

 $= (9.72 \times 10^{-5})/1.2$

Q11.

(c)

6	(a)	(i)	peak voltage = $6\sqrt{2}$ peak voltage = 8.48 V	C1 A1	[2]
		(i	i)	zero because either no current in circuit (and $V = IR$) or all p.d. across diode	B1	[1]
	(b)			form: half-wave rectification peak height at about 4.25 cm half-period spacing of 2.0 cm	B1 B1 B1	[3]
		(8	allow	±¼ square for height and half-period)		
	(c)	(i)	capacitor shown in parallel with resistor	B1	[1]
		(i	i)	either energy = $\frac{1}{2}CV^2$ or = $\frac{1}{2}QV$ and $Q = CV$ = $\frac{1}{2} \times 180 \times 10^{-6} \times (6\sqrt{2})^2$ = 6.48×10^{-3} J	C1 C1 A1	[3]
		(i	ii)	either fraction = 0.43 ² or final energy = 1.2 mJ fraction = 0.18	C1 A1	[2]
Q1	2.					
	6	(a)	(i)	either prevent loss of magnetic flux or improves flux linkage with secondary B1	[1]	
			(ii)	reduces eddy current (losses) B1 Reduces losses of energy (in core) B1	[2]	
		(b)	(i)	(induced) e.m.f. proportional to / equal to rate of change of (magnetic) flux (linkage) M1 A1	[2]	
			(ii)	changing current in primary gives rise to (1) changing flux in core (1) (1) flux links with the secondary coil (1) changing flux in secondary coil, inducing e.m.f. (1)		

Page 4	Mark Scheme	Syllabus	Pape	r
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	GCE NAS LEVEL - October/November 2008	9702	04	
1	any three, 1 each to max 3) can change voltage easily / efficiently		В3	[3]
	nigh voltage transmission reduces power losses two sensible suggestions, 1 each)		B2	[2]

Q13.

7	(a)	e.g	. more (output) power available . less ripple for same smoothing capacitor v sensible suggestion	.B1	[1]
	(b)	(i)	curve showing half-wave rectification	.B1	[1]
		(ii)	similar to (i) but phase shift of 180°	.B1	[1]
	(c)	(i)	correct symbol, connected in parallel with R	.B1	[1]
		(ii)	(not increase R)		[1]
			2 same peak values		[2]
			I	[Total	: 7]
Q14					
6	(a)	(i)	e.g. prevent flux losses / improve flux linkage	B1	[1]
		(ii)	flux in core is changing e.m.f. / current (induced) in core induced current in core causes heating	B1 B1 B1	[3]
	(b)	(i)	that value of the direct current producing same (mean) power / heating in a resistor	M1 A1	[2]
		(ii)	power in primary = power in secondary $V_P I_P = V_S I_S$	M1 A1	[2]
Q15					
6	(a		ower / heating depends on I^2 independent of current direction	M1 A1	[2]
	(b	I_0	ther maximum power = $I_0^2 R$ or average power = $I_{RMS}^2 R$ = $\sqrt{2} \times I_{RMS}$	M1 M1	
			aximum power = 2 × average power tio = 0.5	A1	[3]

Q16.

6	(a)	(i)		C1 A1	[2]
		(ii)	peak voltage = 17.0 V	A1	[1]
		(iii)	r.m.s. voltage = $17.0/\sqrt{2}$ = 12.0 V	A1	[1]
		(iv)	mean voltage = 0	A1	[1]
	(b)	pov	$= 12^2/2.4$	C1 A1	[2]
Q17					
5	(a)		ply connected correctly (to left & right) d connected correctly (to top & bottom)	B' B'	
	(b)		power supplied on every half-cycle greater average/mean power y sensible suggestion, 1 mark)	В	1 [1]
	(c)	(i)	reduction in the variation of the output voltage/current	В	1 [1]
		(ii)	larger capacitance produces more smoothing	M	1
			either product RC larger or for the same load	A	1 [2]

Q18.

6	(a) (i)	connection to 'top' of resistor labelled as positive	B1	[1]
	(ii)	diode B and diode D	B1	[1]
	(b) (i)	$V_P = 4.0 \text{ V}$ mean power = $V_P^2/2R$ = $4^2/(2 \times 2700)$	C1 C1	
		$= 2.96 \times 10^{-3} \text{W}$	A1	[3]
	(ii)	capacitor, correct symbol, connected in parallel with R	B1	[1]
	, , ,	ph: half-wave rectification ne period and same peak value	M1 A1	[2]

Q19.

whatsapp: +92 323 509 4443, email: megalecture@gmail.com

7	(a)	(i)	either heating effect in a resistor ∞ (current) ²	B1	
			square of value of an alternating current is always positive	B1	
			so heating effect	A0	
			or current moves in opposite directions in resistor during half-cycles	(B1)	
			heating effect is independent of direction	(B1)	[2]
		(ii)	that value of the direct current	M1	
			producing the same heating effect (as the alternating current) in a resistor	A1	[2]
	(b)	(i)	induced e.m.f. proportional to the rate	M1	
	(10)	(-)	of change of (magnetic) flux (linkage)	A1	[2]
		(ii)	flux in core is in phase with current in the primary coil	B1	
			(induced) e.m.f. in secondary because coil cuts the flux	B1	
			flux and rate of change of flux are not in phase	B1	[3]

winth the sale extratte.