Question 1

8 (a)	$\begin{aligned} & \text { M:M+1 }=100 /(1.1 \mathrm{xn}) \\ & 20.4 / 0.9=100 /(1.1 \mathrm{xn}) \\ & \mathrm{x}=4 \end{aligned}$	1	
(ii)	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	1	[3]
(b) (i)	2-methylpropan-1-ol OR correct structure	1	
(ii)	$0.9-1.0$ is $(2 \times) \mathrm{CH}_{3} \mathrm{R} / \mathrm{CH}_{3} / \mathrm{RCH}$ multiplet/1.8 is $\mathrm{CHR} / \mathrm{R}_{3} \mathrm{CH}$ singlet2.5 is OH^{2} 3.4 is $\mathrm{CH}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{O}$	1 1 1 1 1	
(iii)	doublet 1H/one proton on adjacent carbon	1	

(iv)	OH peak or one peak disappears OH proton is labile or exchanges for D of $\mathrm{D}_{2} \mathrm{O}$ or as an equation e.g. $\mathrm{D}_{2} \mathrm{O}+\mathrm{OH} \rightarrow \mathrm{DOH}+\mathrm{OD}$ as a minimum1 [9]		
Total		1	12

Question 2

(a) NMR and radiowaves (or VHF/UHF or $40-800 \mathrm{MHz}$)
(b) NMR: protons have (nuclear) spin or (spinning) proton produces magnetic moment/field or two spin states or protons can align with or against an applied magnetic field
there is insufficient electron density/cloud around H atoms for X -ray crystallography
(c) Sulfur, because it has the highest electron density
(d) (i) $\frac{4.5}{1.5}=\frac{100}{1.1} \times n$

$$
\mathrm{n}=\frac{100 \times 0.15}{4.5 \times 1.1}=3.03=3
$$

(calculation must be shown) [1]
(ii) the -OH peak (broad singlet) at $\delta 4.6$
(iii) 3 (three)
(iv) \mathbf{Q} has peak at 11.7δ.
which is due to $-\mathrm{CO}_{2} \mathrm{H}$
(This can only be formed by oxidising a primary alcohol.)
or \mathbf{P} has 4 peaks in its NMR spectrum, not 3
in a secondary alcohol with 3 carbons, two (methyl) groups will be in the same chemical environment (or witte)
or analysis of the splitting pattern in \mathbf{P} : the peaks at 80.9 and 3.6 are triplets, so each must be adjacent to a $-\mathrm{CH}_{2}$ - group. (hence $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$)

Question 3

(a) Expression: $\mathrm{n}=\frac{100 \times 2.5}{1.1 \times 74}$ or equivalent
$\mathrm{n}=3.1$ hence \mathbf{G} has three carbon atoms
(b) (i) (8 1.1) RCH_{3} or $\mathrm{RCH}_{2} \mathrm{R}$ or methyl or CH_{3}
($\delta 2.2$) $(\mathrm{R}) \mathrm{CH}_{2} \mathrm{CO}(\mathrm{R})$ or $\mathrm{CH}_{3} \mathrm{CO}(\mathrm{R})$
($\delta 11.8$) $(\mathrm{R}) \mathrm{COOH}$ or $(\mathrm{R}) \mathrm{CONH}(\mathrm{R})$
(c) (i)
(ii) The (-OH) peak at $\delta 11.8$ (disappears)
because of $(\mathrm{O}) \mathrm{H}-\mathrm{D}$ exchange or equation showing this (e.g. $\mathrm{R}-\mathrm{OH}+\mathrm{D}_{2} \mathrm{O} \rightleftharpoons \mathrm{R}-\mathrm{OD}+\mathrm{HOD}$)
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$

or

or
${ }^{\mathrm{HO}}$

(ii) If methyl ethanoate: $82.0-2.1$ 8 3.3-4.0

Or if 1, 3-dioxolane: δ 3.3-4.0 [1]
8 3.3-5.0
Or if 1, 2-dioxolane: 8
0.9-1.4
3.3-4.0
8 3.3-4.0
Or if dihydroxycyclopropane: 8 0.9-1.4
7. (a) (i) $\frac{43.3}{3.35}=\frac{100}{1.1 \times n}$
$\mathrm{n}=\frac{100 \times 3.35}{43.3 \times 1.1}=7.03=7$ (calculation must be shown)
(ii) The M and $M+2$ peaks are in the ratio 3:1 hence the halogen is chlorine/ $C l$
(iii) L contains 7 hydrogen atoms or there are 3 types/environments of proton/H
(iv) The multiplet with 4 hydrogens or peaks at $\delta 7.3$ suggests a benzene ring The singlet with 2 hydrogens or peak at $\delta 4.7$ suggests a - CH_{2} - group The singlet with 1 hydrogen or peak at $\delta 2.3$ suggests an -OH group or reaction with Na suggests an OH group
OH must be an alcohol, not a phenol (due to its δ value)
Since L also contains 7 carbon atoms and chlorine, this accounts for 126 of the 142 mass, the remaining atom must be oxygen
Thus L is

(allow the 2-, 3- or 4-isomer)
(b) (i) we expect propene to have a CH_{3} peak or a peak at m/e 15 or cyclopropane would have fewer peaks
(ii) cyclopropane would have 1 peak (ignore splitting)
propene would have 2 (or 3 , or 4) peaks
or propene would have peaks in the $\delta 4.5-6.0$ (alkene) region
no splitting of cyclopropane peak
(any two points)

Question 5

(c) \mathbf{P} is $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

any four of:

- 3 different (proton) environments
- (M and $M+1$ data shows no of carbons present is) $(100 \times 0.22) /(1.1 \times 5.1)=4$ carbons
- the NMR spectrum shows 8 hydrogens leaving 32 mass unit or 2 oxygen or $M_{\mathrm{r}}=88$ and (molecular formula is) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
- 4 peaks/quartet (at 4.1) shows an adjacent $3 \mathrm{H} / \mathrm{CH}_{3}$
- 3 peaks/triplet (at 1.3) shows an adjacent $2 \mathrm{H} / \mathrm{CH}_{2}$
- (peak at) 2.0/singlet shows $\mathrm{CH}_{3} \mathrm{CO}$ (group)
- (peak at) 4.1 quartet and $1.3 /$ triplet shows presence of ethyl/ $\mathrm{CH}_{3} \mathrm{CH}_{2}$ (group)

Question 6

(a)

structural information	analytical technique
three-dimensional arrangement of atoms and bonds in a molecule	X-ray crystallography/diffraction
chemical environment of protons in a molecule	NMR (spectroscopy) only
identity of amino acids present in a polypeptide	Electrophoresis $/$ chromatography $/$ mass spectrometry

(b) (i) paper chromatography;

The components partition between the solvent/moving phase and the water/liquid stationary phase or separation relies on different solubilities (of components) in the moving solvent and the stationary water phase.
(ii) thin-layer chromatography.

Separation depends on the differential adsorption of the components onto the solid particles/phase or $\mathrm{Al}_{2} \mathrm{O}_{3}$ or SiO_{2}.
(c) (i) No. of carbon atoms present $=\frac{0.2 \times 100}{5.9 \times 1.1}=3.08$ hence 3 carbons
(ii) Bromine
(iii) One bromine is present as there is only an $M+2$ peak / no $M+4$ peak or the M and $M+2$ peaks are of similar height
(iv) NMR spectrum shows a single hydrogen split by many adjacent protons and 6 protons in an identical chemical environment. This suggests...
two $-\mathrm{CH}_{3}$ groups and a lone proton attached to the central carbon atom
Empirical formula of N is $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$

Question 7

(c) (i) They have insufficient electron density/ only one electron
(ii) Sulfur
because it has the greatest atomic number / number of electrons

Question 8

(b) (i) They are largely composed of (carbon and) hydrogen which are active in the NMR (owtte) or protons $/ \mathrm{H}^{+} / \mathrm{H}$ exist in different chemical environments (with characteristic absorptions) (1)
(ii) 2 correct displayed formulae (1)

In propanone all the protons are in a similar chemical environment (and hence there will be one proton peak.) (1)

In propanal there are (three) different chemical environments and hence there will be (three) proton peaks or three different chemical environments or three proton peaks (1)

Question 10

(c) (i) Ratio would be $3: 1$
(ii) Each chlorine at could be ${ }^{35} \mathrm{Cl}$ or ${ }^{37} \mathrm{Cl}$

Only way of getting $M+4$ is for both chlorines to be ${ }^{37} \mathrm{Cl}$ (1 in 9 chance)
Ratio of peaks $\begin{array}{rcc}M & M+2 & M+4 \\ 9 & 6 & 1\end{array}$
(d) (i) Accept dioxins and furans (without specifying)

(ii) PCBs (but don't penalise non-specified dioxins and furans)

(iii) Allow : pollution control / environmental legislation / removal of dioxins and furans /
mill closed down (owtte)
(iv) Five

Question 9

8 (a) Protons (1)
in NMR, energy is absorbed due to the two spin states (1)
Electrons (1)
in X-ray crystallography, X -rays are diffracted (by regions of high electron density) (1)
(b) (i) 1-no mark

The spectrum of alcohol $/ \mathbf{Y}$ contains different peaks
Alcohol / Y contains different chemical environments
Spectrum 2 contains only one peak (1)
(ii) Spectrum 2 only shows 1 peak so \mathbf{Z} must be a ketone (1)

Hence \mathbf{Y} must be a 2° alcohol (1)
Number of carbon atoms present $=\frac{0.6 \times 100}{17.6 \times 1.1}=3$ (1)
Thus \mathbf{Z} must be $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ (1)
Hence \mathbf{Y} must be propan-2-ol, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ (1)
(iii)

(iv) All of the protons in \mathbf{Z} are in the same chemical environment (1)

Question 11

(a) (i) Positions of atomic nuclei $/$ atoms
(ii) Insufficient electrons / electron density / electron cloud (around H atom) (1)
(b) X-ray crystallography can show the geometry of the arrangement of atoms / bonding between atoms / shape of atoms

This can help explain how e.g. enzymes work (any reasonable example) (1)
(c) (i) Nuclear spin
(ii) (If $\mathrm{M}: \mathrm{M}+1$ gives a ratio $15: 2$)

Then $\mathrm{x}=\frac{100 \times 2}{1.1 \times 25}=7$
Single peak at 3.7δ due to $-\mathrm{O}_{-\mathrm{CH}_{3}}$
Single peak at 5.68 due to phenol $/ \mathrm{OH}$
$1,2,1$ peak at 6.8δ due to hydrogens on benzene ring (1)
Pattern suggests 1,4 subsitution
$(\mathrm{x}=7$, , $) \mathrm{y}=8, \mathrm{z}=2$
Compound is 4-methoxylphenol (1)

Question 12

(b) (i) NMR can be done in solution / in vivo / shows labile protons / shows positions of protons and/or carbon atoms X-ray crystallography shows the positions of most atoms in structure / allows measurement of bond length[1]
(ii) different types of tissue have protons in different chemical environments / tumour and healthy tissue absorb differently / allow at different frequencies
(c) (i) $\mathrm{M}: \mathrm{M}+1=48: 1.7$
$x=\underline{100 \times 1.7} 1 .=3.2$ hence there are 3 carbon atoms in the compound

1.1×48 NB if calculation shown 1.1 divisor MUST be present

 since the compound has an m / e of 73 and contains 3 carbon atoms, 1 nitrogen atom and1 oxygen atom, $y=73-(36+14+16)=7$
(ii) the NMR spectrum shows a quartet, triplet pattern characteristic of an ethyl group [1] the other broad peak must be due to N-H protons
thus the structure of the compound is likely to be $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$

Question 13

(a) (i) 162

162	$\left({ }^{81} \mathrm{Br}^{-81} \mathrm{Br}^{+}\right)$
160	$\left({ }^{81} \mathrm{Br}^{-79} \mathrm{Br}^{+}\right)$
158	$\left({ }^{79} \mathrm{Br}^{-79} \mathrm{Br}^{+}\right)$ignore missing charges
81	$\left({ }^{81} \mathrm{Br}^{+}\right)$
79	$\left({ }^{79} \mathrm{Br}^{+}\right)$

for molecular species for atomic species for 5 masses [1]
(ii) $158: 160: 162=1: 2: 1$
$79: 81=1: 1$
(b) (i) either $\mathrm{BrCH}_{2} \mathrm{CHBr}-\mathrm{CHO}$ or $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$ (double bond needed)
(ii) reaction L: Br_{2} (aq or in CCl_{4} etc.), light negates - solvent not needed[1] reaction II: $\quad \mathrm{NaBH}_{4}$ or $\mathrm{H}_{2} / \mathrm{Ni}$ etc. (but not if \mathbf{A} is $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$) allow LiAlH_{4} or Na /ethanol
(reactions can be reversed)
(c) (i) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OBr}_{2}=216,218$ and 220
(any one)
(ii) 31 is $\mathrm{CH}_{2} \mathrm{OH}^{+} / \mathrm{CH}_{3} \mathrm{O}^{+}$

106 is $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{79} \mathrm{Br}^{+}$
108 is $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{81} \mathrm{Br}^{+}$
185 is $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{79} \mathrm{Br}_{2}{ }^{+}$ignore missing charges
$\begin{array}{lll}187 & \text { is } \mathrm{C}_{2} \mathrm{H}_{3}^{79} \mathrm{Br}^{81} \mathrm{Br}^{+} & 6 \text { correct [4] } \\ 189 & \text { is } \mathrm{C}_{2} \mathrm{H}_{3}{ }^{81} \mathrm{Br}_{2}{ }^{+} & 5 \text { col }\end{array}$
189 is $\mathrm{C}_{2} \mathrm{H}_{3}{ }^{81} \mathrm{Br}_{2}{ }^{+} \quad 5$ correct [3] etc
if no mass numbers given - [1] only

Question 14

(a) Suitable diagram showing origin of two energy states/or description - [1]

Needs to mention applied magnetic field/electron transfer negates
Indication that energy difference is in the radio frequency range Indication that frequency of absorption or gap between the 2 energy states depends on the nature of nearby atoms or the chemical environment of the ${ }^{1} \mathrm{H}$
(b) They do not damage tissues/X-rays harmful/NMR of lower energy They are not obscured by bones/skeleton
They can be tuned to examine particular tissues/tumours/organs/protons
(c) (i) $\mathrm{M}: \mathrm{M}+1=100 /(1.1 \mathrm{n})$
$n=\frac{0.66 \times 200}{14.5 \times 1.1}=\frac{66}{15.95}=4.14=4$ carbon atoms
Check for 1.1 in divisor, if missing, penalise
(ii) Singlet at $\delta 2$ suggests methyl adjacent to $\mathrm{C}=\mathrm{O}$

Quartet at $\delta 4$ suggests a $-\mathrm{CH}_{2}$ - group (adjacent to a -methyl group)
(allow- $\mathrm{OCH}_{2^{-}}$)
Triplet at $\delta 1.2$ suggests a methyl group (adjacent to a $-\mathrm{CH}_{2}$)
\mathbf{G} is ethyl ethanoate (or structure)/if methyl propanoate given here cannot score first marking point

Question 15

(a) (i) + (ii) any two from:

- The nature/electronegativity of the atom the proton is attached to or is near or the electronic/chemical environment of the proton
- The number/spin states of adjacent protons or protons attached to adjacent atoms
- The (strength of) the applied/external magnetic field
(b) (i) Peak at $1.268=(3 \times) \mathrm{CH}_{3}$ or methyl and Peak at $2.0 \delta=-\mathrm{O}-\mathrm{H}$ or alcohol

Structure:

(ii) $\begin{array}{ccc}\text { Isomer } & \text { Isomer } & \text { Isomer } \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} & \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}\end{array} \mathrm{CH}_{3} \mathrm{CH} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$
structures of any two isomers (Also allow both stereoisomers of butan-2-ol) correct assignation of no. of peaks
(c) (i) Phosphorus - it has more electrons or high electron density (NOT phosphate)
(ii) H atoms don't have enough electron density to show up or they only contain one e^{-}[1]

Question 16

(c) (i) $156=\mathrm{C}_{3} \mathrm{H}_{6}{ }^{35} \mathrm{C} l^{79} \mathrm{Br}^{+}$
$158=\mathrm{C}_{3} \mathrm{H}_{6}^{37} \mathrm{Cl}^{79} \mathrm{Br}{ }^{+}$
$158=\mathrm{C}_{3} \mathrm{H}_{6}{ }^{35} \mathrm{Cl}^{31} \mathrm{l}^{11} \mathrm{Br}^{+}$
$160=\mathrm{C}_{3} \mathrm{H}_{6}{ }^{37} \mathrm{Cl}^{81} \mathrm{Br}^{+}$
$m / e=15$ Species $=\mathrm{CH}_{3}$
(ii) $m / e=15$ Species $=\mathrm{CH}_{3}{ }^{+}$

Question 17

(c) (i) X is bromine -M and $(\mathrm{M}+2)$ peaks almost same height
(ii) $\frac{\mathrm{M}}{\mathrm{M}+1}=\frac{100}{1.1} \times \frac{9}{\mathrm{n}}=\frac{100}{0.3} \quad 1.1 \times \mathrm{n}$

Hence $\mathrm{n}=\frac{100 \times 0.3}{1.1 \times 9}=3.03 \quad p=3$
(If the mass peak is at 122 and the compound contains Br and 3 C atoms then $Q=(122-79-36))$ thus $Q=7$ ecf from (ii) [1]
(The compound is $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$)
(iii) (R is at $\mathrm{m} / \mathrm{e} 43$), hence $\mathrm{C}_{3} \mathrm{H}_{7}^{+}$
(d) Any two from $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{CH}_{4}$

Question 18

(d) (i) $\mathrm{Si}_{3} \mathrm{Cl}_{8} \mathrm{O}_{2}$ (this has $\mathrm{M}_{\mathrm{r}}=84+280+32=396$) or $\mathrm{Si}_{4} \mathrm{Cl}_{4} \mathrm{O}_{9}$ or $\mathrm{Si}_{8} \mathrm{Cl}_{4} \mathrm{O}_{2}$
(ii)

mass number	structure
133	$\mathrm{Cl}_{3} \mathrm{Si}$
247	$\mathrm{Cl}_{3} \mathrm{Si}-\mathrm{O}-\mathrm{SiCl} l_{2}$
263	$\mathrm{Cl}_{3} \mathrm{Si}-\mathrm{O}-\mathrm{SiCl} l_{2}-\mathrm{O}$

(if correct structures are not given for last 2 rows, you can award (1) mark for two correct molecular formulae
either $\mathrm{Si}_{2} \mathrm{Cl}_{5} \mathrm{O}+\mathrm{Si}_{2} \mathrm{Cl}_{5} \mathrm{O}_{2}$ or $\mathrm{Si}_{3} \mathrm{ClO}_{8}+\mathrm{Si}_{3} \mathrm{ClO}_{9}$ or $\mathrm{Si}_{7} \mathrm{ClO}+\mathrm{Si}_{7} \mathrm{ClO}_{2}$)
(iii)

allow ecf on the structure drawn in the third row of the table in (ii) but any credited structure must show correct valencies for Si, Cl and O .

Question 19

9 (a) spinning proton produces two spin states / magnetic moments these can align with or against an applied magnetic field
(1)
(1) [2]
(b) field experienced by protons is influenced by adjacent atoms / protons are in two different chemical environments
peaks are in the area ratio $3: 1$ (methyl to -OH protons)
or are at $0.5-6.0 \delta$ and $3.3-4.0 \delta$
(c) (i)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$

methyl ethanoate $\mathrm{HCO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
propanoic acid
ethyl methanoate all for (2) two for (1)
(ii) compound is $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}$ or methyl ethanoate
the other two compounds each have 3 different proton environments, but the spectrum shows only 2 peaks.
A is $\mathrm{OCH}_{3}, \quad B$ is $\mathrm{CH}_{3} \mathrm{CO}$
(iii) compound - propanoic acid or ethyl methanoate the- OH proton or the $\mathrm{H}-\mathrm{CO}$ proton
(1) $[6]$
(d) (i) distance between atoms / bond lengths / bond angles
(ii) hydrogen atoms
(1) [2]

Question 20

(b) (i) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ would show
a single peak/no splitting since all the Hs are in the same chemical environment or a peak at $\delta=2.1$ due to $\mathrm{CH}_{3} \mathrm{CO}$ group
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ would show 3 (sets of) peaks since there are 3 different proton environments
or there would be a peak at $\delta=9.5-10.0$ due to the -CHO group
or a peak at $\delta=0.9$ due to CH_{3}
or a peak at $\delta 1.3$ due to CH_{2}
(reasons needed for the marks. Salvage: if reasons are not given, but candidate states that propanone will have one peak and propanal three, then award [1] mark)
(ii) different fragments:

- $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ would form fewer fragments (must be stated in words)
- $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ would form a fragment of $\mathrm{CH}_{3} \mathrm{CO}^{+}$or at (m/e) 43
- $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ would form a fragment of $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}$or CHO^{+}at (m / e) 29
- $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ would form a fragment of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}$or at (m/e) 57
[charges on fragments not required for mark]
(c) (i) peaks at (m / e) 79 and 81 or at (m / e) 94 and 96
(ii) in chlorine the M and $M+2$ peaks are the ratio $3: 1$ whereas in bromine they are approx. 1:1

Question 21

(ii) $\mathrm{NH}_{4} \mathrm{NO}_{3} \longrightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$

