1. (a) (i) $2 \mathrm{Na} \underset{\text { (or multiples) }}{+2 \mathrm{NH}_{3}} 2 \mathrm{NaNH}_{2}+\mathrm{H}_{2}$ (or multiples)
(ii) (Missing 'H' penalise once only) [NOT dot-and-cross diagrams]

[NOT $90^{\circ} / 180^{\circ}$ angles] (need 2 lp \& 'bent' shape)
(iii) $\underline{107^{\circ}}$
(iv) More lone pairs on NH_{2}-, than on NH_{3}

Lone pairs repel more than bonding pairs Must be comparison (Mark separately)
[NOT repulsion between atoms or between bonds]
(b) (i) Simplest ratio of atoms of eacarelement in a compound / substance / species / entity / molecule
(ii)

1 1
(Mark M1 first. If any wrong A_{r} used $=C E=0$) anccept $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ for M3 if above working shown)
2. (a) 242

Units not essential
(b) Bond is shorter or bonding pair closer to nucleus

Allow Cl is a smaller atom
Allow fewer electron shells do not allow smaller molecules

So attraction (between nucleus and) (to) bond pair is stronger Allow shared pair (or bonding electrons) held more tightly

Mention of Cl loses M2
(c) Net attraction between the chlorine nucleus and the extra electron Allow Cl - ion more stable than Cl
(d) (i)
step $1 \mathrm{Ag}(\mathrm{s}) \quad \mathrm{Ag}(\mathrm{g})$ only change
step $2 \mathrm{Ag}(\mathrm{s}) \quad \overrightarrow{\mathrm{Ag}}+(\mathrm{g})+\mathrm{e}$ - only change
step $3{ }^{1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{Cl}(\mathrm{g}) \text { only change }} \begin{aligned} & \text { This step can be first, second or third }\end{aligned}$
(ii) $127+289+732+121-364$
$=905 \mathrm{~kJ} \mathrm{~mol}^{-1}$
-905 scores 1 mark only
(e) (i) Ions can be regarded as point charges (or perfect spheres)

Allow no polarisation
OR only bonding is ionic
OR no covalent character
(ii) Greater

Electronegativity argument or mention of intermolecular, $C E=0$

Chloride ions are smaller than bromide
Mark independently but see above
They are attracted more strongly to the silver ions Mark independently
(iii) AgCl has covalent chexacter

Ignore reference to molecules
Forces in the lattice are stronger than pure ionic attractions Allow stronger:oonding OR additional/extra bonding
3. (a) Particles are in maximum state of order
(or perfect order or completely ordered or perfect crystal or minimum disorder or no disorder)
(entropy is zero at 0 k by definition)
(b) (Ice) melts
(or freezes or changes from solid to liquid or from liquid to solid)
(c) Increase in disorder

Bigger (at T_{2})
Second mark only given if first mark has been awarded
(d)
(i) Moles of water $=1.53 / 18(=0.085)$

Heat change per mole $=3.49 / 0.085=41.1\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(allow 41 to 41.1, two sig. figs.)
(penalise -41 (negative value), also penalise wrong units but allow kJ only)
(ii) $\quad \mathrm{G}=\mathrm{H}-\mathrm{T} \mathrm{S}$
(iii)

$$
\mathrm{H}=\underset{\text { (penalise if contradiction) }}{\mathrm{T} S \text { or } \mathrm{S}=\mathrm{H} / \mathrm{T}}
$$

$$
\mathrm{S}=41.1 / 373=0.110 \mathrm{~kJ} \mathrm{~K}^{-1}\left(\mathrm{~mol}^{-1}\right)\left(\text { or } 110\left(\mathrm{~J} \mathrm{~K}^{-1}\left(\mathrm{~mol}^{-1}\right)\right)\right.
$$

$$
\text { (allow } 2 \text { sig. figs.) }
$$

(if use value given of 45 , answer is 0.12 (or 120 to 121)
(if $\Delta \mathrm{H}$ is negative in (d) (i), allow negative answer)
(if $\Delta \mathrm{H}$ is negative in (d) (i), allow positive answer)
(if $\Delta \mathrm{H}$ is positive in (d) (i), penalise negative answer)

Correct units as above (mol-1 not essential)

1
4. \quad M1 equilibrium moles of $\mathrm{CO}=62.8-26.2=36.6$

M2 equilibrium moles of $\mathscr{H}_{2}=146-2(26.2)=93.6$

M3 total no moles $-36.6+93.3+26.2=156.4$

1
partia Dressure $=$ mole fraction x total pressure

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{PCH}_{3} \mathrm{OH}}{\mathrm{PCO} \times \mathrm{P}^{2} \mathrm{H}_{2}}
$$

M5

$$
=\frac{\left(\frac{26.2}{156.4} \times 9.50\right)}{\left(\frac{36.6}{156.4} \times 9.50\right) \times\left(\frac{93.6}{156.4} \times 9.50\right)^{2}}
$$

M6
(0.168×9.5)
$(0.234 \times 9.50) \times(0.598 \times 9.5)^{2}$

M7 $\quad 0.022(1) \quad 2.2(\mathrm{I}) \times 10^{-8} \quad 2.2(\mathrm{l}) \times 10^{-14}$

M8 $\quad \mathrm{MPa}^{-2} \quad \mathrm{kPa}-2 \quad \mathrm{~Pa}^{-2}$
If no subtraction lose M1, M2 and M3) (If $\times 2$ missed in M2, lose both M2 and M3) (If M1 gained but moles of $\mathrm{H}_{2}=73.2$ (i.e. double CO), M2 and M3 lost) (If M1 gained but mol $\mathrm{H}_{2}=2$ (146-26.2), M2 and M3 lost)
(If M1 and M2 correct but M3 lost for CE, penalise M6 also)
(M4 can be gained from the numbers in the expression for M6 even if these numbers are wrong)
(If K_{p} contains [] lose M5 but then mark on)
(If chemically wrong expression for K_{p}, lose M5, M6 and M7 (allow M8 conseq on their K_{p}))
(If divided by 9.5, or not used 9.5 at all, lose M6 and M7 (and M4))
(If tried to convert to kPa and is factor(s) of 10 out, penalise in M6 and allow M8 for $\mathrm{kPa} \mathrm{a}^{-2}$)
5. (a) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$K_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}_{2},\right.}$ or $\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]$
1

1
$\left[H^{+}\right]=1.74 \times 10^{-5} \times 0.15\left(\right.$ or $\left.1.62 \times 10^{-3}\right)$
$\mathrm{pH}=2.79$ (penalise 1 dp or more than 2 dp once in the qu)

1

1

1
(b) (i) Solution which resists change in pH /maintains pH
despite the addition of (small amounts of) acid/base (or dilution)
1
(ii) $\mathrm{CH}_{3} \mathrm{COO}+\mathrm{H}^{+} \quad \mathrm{CH}_{3} \mathrm{COOH}$
must show an equation full or ionic in which ethanoate ions are converted to ethanoic acid
(c) (i)
if rearrangement incorrect, no further marks

$$
=1.74 \times 10^{-6} \times \frac{0.15}{0.10}
$$

$$
\left(=2.61 \times 10^{-5}\right)
$$

$\mathrm{pH}=4.58$
(ii) $\mathrm{Ml} \quad$ moles $\mathrm{H}+$ added $=10 \times 10^{-3} \times 1.0=0.01$

M2 moles ethanoic acid after addition $=0.15+0.01=0.16$
1
M3 moles ethanoate ions after addition $=0.10-0.01=0.09$

$$
\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}=1.74 \times 10^{-5} \times \frac{0.16 \mathrm{~N}}{0.09 \mathrm{~N}}
$$

M4

$$
\left(=3.09 \times 10^{-5}\right)
$$

M5 $\mathrm{pH}=4.51$
The essential part of this calculation is addition/subtraction of 0.01 moles to gain marks M2 and M3. If both of these are missing,
only mark M1 is available. Thereafter treat each mark independently,
except if the expression in M4 is wrong, in which case both M4 and M5 are lost.
alternative scheme for part (c)(i)
$\mathrm{pH} p \mathrm{~K}_{\mathrm{a}}-\log \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}$

MEGA LECTURE

$$
\mathrm{pH}=\left(4.76-\log \frac{0.15}{0.10}\right)=4.58
$$

alternative for penultimate mark of part (c)(ii)

$$
p H=4.76-\log \frac{0.16}{0.09}
$$

6. Penalise pH given to 1 dp first time it would have scored only
(a) (i) $\mathrm{K}_{w}=\left[\mathrm{H}_{+}\right]\left[\mathrm{OH}_{-}\right]$(1)
(ii) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$(1)
or in words or below unless contradiction
(iii) Calculation: $\left[\mathrm{H}_{+}\right]=\sqrt{5.48 \times 10^{-14}}$

$$
\begin{align*}
& =2.34 \times 10-7 \\
& \therefore \mathrm{pH}=6.63 \text { or } 6.64 \tag{1}
\end{align*}
$$

Explanation: pure water $\therefore\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}_{-}\right](\mathbf{1})$
5
(b) (i) $[\mathrm{OH}-]=0.150$

$$
\begin{aligned}
& \text { or } \mathrm{pOH}=0.82 \\
& \therefore \mathrm{pH}=13.18 \text { (1) } \\
& \text { or } \mathrm{pH}=13.17
\end{aligned}
$$

(ii) moles $\mathrm{OH}^{-}=\left(35 \times 10^{-3}\right) \times 0.150=5.25 \times 10^{-3}(\mathbf{1})$ moles $\mathrm{H}^{+}=\left(40 \times 10^{-3}\right) \times 0.120=4.8(0) \times 10^{-3}(\mathbf{1})$
\therefore excess moles of $\mathrm{OH}^{-}=4.5 \times 10^{-4}$ (1)
$\therefore\left[\mathrm{OH}^{-}\right]=\left(4.5(0) \times 10^{-4}\right) \times 1000 / \underline{75}(\mathbf{1})^{\mathrm{e}}$

$$
=6.0(0) \times 10
$$

$$
\left[\mathrm{H}_{+}\right]=\frac{10^{-14}}{6.00 \times 10}=1.66 \times 10^{-12} \text { or } \mathrm{pOH}=2.22
$$

$$
\therefore \mathrm{pH}=11,8(\mathbf{1})
$$

$$
\text { or } 11.77
$$

Notes
(a) If K_{w} includes $\mathrm{H}_{2} \mathrm{O}$ allow 6.63 if seen otherwise no marks likely
(b) (ii) If no vol, max 4 for a, b, c, f answer $=10.65$

If wrong volume max 5 for a, b, c, e, f
If no substraction $\max 3$ for a, b, d

If missing 1000 max 5 for a, b, c, d, f answer $=8.78$
If uses excess as acid, max 4 for a, b, d, f answer $=2.22$
If uses excess as acid and no volume, max 2 for a,
b answer $=3.35$
(c) If wrong K_{a} in (i) max 2 in part (ii) for $\left[\mathrm{H}^{+}\right]$(1) and conseq units (1) but mark on fully from minor errors eg no [] or charges missing
7. (a) C

A
D
(b) (i) Bromocresol green Allow wrong spellings
(ii) Purple to yellow

Must have both colours:
Purple start - yellow finish

