

Mention of CI-loses M2

(c) Net attraction between the chlorine nucleus and the extra electron Allow CI- ion more stable than CI

1

1

Page 2 of 11

3.

MEGA LECTURE

(d) (i)	step 1 $Ag(s) \rightarrow Ag(g)$ only change
	→ step 2 Ag(s) → Ag₁(g) + e₋ only change
	step 3 ½Cl₂(g) Cl(g) only change This step can be first, second or third
(ii)	127 + 289 + 732 + 121 – 364
	= 905 kJ mol₁ –905 scores 1 mark only
(e) (i)	lons can be regarded as point charges (or perfe Allow no polarisation OR only bonding is ionic OR no covalent character
(ii)	Greater Electronegativity argument or mention of intermolecular, CE =0
	Chloride <u>ions</u> are smaller than bromide Mark independently but see above
	They are attracted more strongly to the silver ion Mark independently
(iii)	AgCI has covalent character Ignore reference to molecules
	Forces in the lattice are stronger than pure ionic Allow stronger bonding OR additional/extra
	bonding
(a) Par	rticles are in maximum state of order (or perfect order or completely ordered or perfect crystal or minimum disorder or no disorder)
(b) (Ice	(entropy is zero at 0 k by definition) e) melts
D) (ICE	(or freezes or changes from solid to liquid on liquid to solid)
(c) Inci	rease in disorder
Big	ger (at T_2)
	Second mark only given if first mark has be awarded
	_

3

Page 4 of 11

MEGA LECTURE

(d) (i) Moles of water = 1.53/18 (= 0.085) 1 Heat change per mole = 3.49/0.085 = 41.1 (kJ mol⁻¹) (allow 41 to 41.1, two sig. figs.) (penalise -41 (negative value), also penalise wrong units but allow kJ only) 1 G = H - T S(ii) 1 (iii) H = T Sor S = H/T(penalise if contradiction) $S = 41.1/373 = 0.110 \text{ kJ K}^{-1} (\text{mol}^{-1}) (\text{or } 110 (\text{J K}^{-1} (\text{mol}^{-1})))$ (allow 2 sig. figs.) (if use value given of 45, answer is 0.12 (or 120 to 121) (if H is negative in (d) (i), allow negative answer) (if H is negative in (d) (i), allow positive answer) (if H is positive in (d) (i), penalise negative answer) 1 Correct units as above (mol-1 not essential) 1 [10] 4. M1 equilibrium moles of CO = 62.826.2 = 36.61 equilibrium moles of $H_2 = 146 - 2(26.2) = 93.6$ M2 1 36.6 + 93.3 + 26.2 = 156.4 M3 total no moles 1 M4 partial pressure = mole fraction x total pressure 1 M5 1 $\frac{26.2}{156.4} \times 9.50$ ×9.50 M6 (0.168 × 9.5) $(0.234 \times 9.50) \times (0.598 \times 9.5)^2$

5

(ii) CH₃COO + H⁺ CH₃COOH

5.

www.youtube.com/megalecture

WWW.MEGALECTURE.COM

Page 6 of 11

[8]

must show an equation full or ionic in which ethanoate ions are converted to ethanoic acid

www.megalecture.com

Page 7 of 11

8

www.youtube.com/megalecture

[15]

MEGA LECTURE

$$pH = (4.76 - \log \frac{0.15}{0.10}) = 4.58$$

1

1

alternative for penultimate mark of part (c)(ii)

$$pH = 4.76 - \log \frac{0.16}{0.09}$$

6. Penalise pH given to 1 dp <u>first</u> time it would have scored only (a) (i) $K_w = [H_{\tau}] [OH_{\tau}] (1)$

(i)
$$pH = -\log[H_1](1)$$

or in words or below unless contradiction
(ii) Calculation: $[H_1] = \sqrt{548 \times 10^{-14}}$ (1)
 $= 2.34 \times 10^{-7}$
 $pH = 6.63 \text{ or } 6.64$ (1)
Explanation: pure water $[H_1] = [OH_1](1)$
(b) (i) $[OH_1] = 0.150$
 $[H_1] = 10^{-14}/0.15 = 6.66 \times 10^{-14}$
or $pOH = 0.82$
 $pH = 13.18$ (1)
or $pH = 13.18$ (1)
 $or pH = 13.17$
(ii) moles $OH_1 = (35 \times 10^{-3}) \times 0.150 = 5.25 \times 10^{-3}$ (1)⁵
 $excess moles of OH_2 = 4.5 \times 10^{-4}$ (1)⁵
 $[OH_1] = (4.5(0) \times 10^{-3}) \times 1000/75^{\circ}$ (1)⁶
 $= 6.0(0) \times 10^{-3}$
 ID^{-14}
 $[H_2] = 6.00 \times 10^{-3} \times 10^{-3} \text{ or } pOH = 2.22$
 $pH = 11.78$ (1)
 $or 11.77$
 $K_s = [HX]$ (1)
 $[H_2] = 1.80 \times 10^{-2} \times 0.150 = 2.70 \times 10^{-3}$ (1)
 $\frac{[H_2]}{[H_2]} = 1.80 \times 10^{-2} \times 0.150 = 2.70 \times 10^{-3}$ (1)
 $K_s = [HX]$ (1)
 $or 11.73$ $= 4.86 \times 10^{-5}$ (1) mol dm⁻³ (1)
 $\frac{(2.70 \times 10^{-3})^2}{0.1473} = 4.95 \times 10^{-3}$

Notes

(a) If
$$K_w$$
 includes H_2O allow 6.63 if seen otherwise no marks likely

(b) (ii) If no vol, max 4 for a, b, c, f answer = 10.65 If wrong volume max 5 for a, b, c, e, f If no substraction max 3 for a, b, d

www.youtube.com/megalecture

Page 9 of 11

MEGA LECTURE

If missing 1000 max 5 for a, b, c, d, f answer = 8.78 If uses excess as acid, max 4 for a, b, d, f answer = 2.22 If uses excess as acid and no volume, max 2 for a, b answer = 3.35 If wrong K_a in (i) max 2 in part (ii) for [H+] **(1)** and conseq units **(1)** *but mark on fully from minor errors*

eg no [] or charges missing

(c)

[18]

7. (a)	С	
	А	
	D	

10

1

1

[5]

(b) (i) Bromocresol green Allow wrong spellings

> (ii) Purple to yellow Must have both colours: Purple start – yellow finish

www.megalecture.

11