A-LEVEL AP1 PAPER 2 MS

1. (a) $\mathrm{k}=$ rate $/[\mathrm{A}]^{2}$ or $\frac{3.3 \times 10^{-5}}{\left(4.2 \times 10^{-2}\right)^{2}}$
$=1.87$ or 1.9
Answer scores 2
-1.90 scores first mark only (incorrect rounding)
$\mathrm{mol}{ }^{1} \mathrm{dm}^{3}{ }^{\mathrm{s}}{ }^{1}$
Any order and independent of calculation
(b) Expt 2 rate $=1.167 \times 10^{4} \quad 1.2 \times 10^{4}\left(\mathrm{~mol} \mathrm{dm}^{3} \mathrm{~s}^{1}\right)$

If answers in table are not those given here, check their value of k in part (a) or use of alternative k .

Expt $3[\mathrm{~A}]=9.7 \times 10^{3} \quad 9.8(1) \times 10^{3}\left(\mathrm{~mol} \mathrm{dm}^{3}\right)$
If their k is incorrect in part (a) mark this part)
consequentially e.g. if $k=7.9 \times 10{ }^{3}$ due to lack
of squaring in (a)
Using alternative value for k
expt 24.9×10^{7}
Expt 2 rate $=1.4(4) \times 10^{4}\left(\mathrm{~mol} \mathrm{dm}^{3} \mathrm{~s}^{1}\right)$
expt $31.5 \times 10^{1} \downarrow$
Expt $3[\mathrm{~A}]=8.85 \times 10^{3}(\mathrm{~mol} \mathrm{dm}$
(expt $26.24 \times 10{ }^{5} \times$ trineir k)
(expt 30.0134 / k)
(c) Slow step or rds involves obly A

OR
B does not appear inhe slow step or the rds
OR
B only appears after the slow step or the rds
Not B has no effect on the rate or B is not in the rate equation
Allow "it" for B
2. (a) propyl methanoate;
$\mathrm{HCOOC}_{3} \mathrm{H}_{7}+\mathrm{OH}-\mathrm{HCOO}+\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
OR
$\mathrm{HCOOC}_{3} \mathrm{H}_{7}+\mathrm{NaOH} \quad \mathrm{HCOONa}+\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} ;$
(b) order wrt $\mathrm{A}=1$;
order wrt $\mathrm{NaOH}=1$;
Initial rate in Exp $4=2.4 \times 10^{-3}$;
(c) (i) $\mathrm{r}($ ate $)=\mathrm{k}[\mathrm{A}]$

OR
$\mathrm{r}($ ate $)=\mathrm{k}[\mathrm{A}][\mathrm{NaOH}] ;$
(penalise missing [] but mark on)
(penalise missing [] once per paper)
(if wrong order, allow only units mark conseq on their rate eqs)
(penalise k_{a} or k_{w} etc)
(ii) $\mathrm{k}=\frac{9.0 \times 10^{-3}}{0.02}$;

$$
=0.45
$$

S-1;
(iii) (large) excess of OH - or [OH-] is large/high;
[OH-] is (effectively) constant
OR
$[A]$ is the limiting factor $\quad(Q \text { of } L \text { mark })^{\circ}$
3. (a)

Mark is for insertion of numbers into a correctly rearranged rate equ, $k=e t c$.
If upside dowen, score only units mark from their k
AE (1) farr copying numbers wrongly or swapoing two numbers
$=1.8(3)$
mo $\mathrm{dm}^{2} \mathrm{~s} \mathrm{~S}$
Any order
If k calculation wrong, allow units consequential to their $k=$ expression
(ii) $5.67 \times 104\left(\mathrm{~mol} \mathrm{dm}^{3} \mathrm{~s}^{1}\right)$ OR their $\mathrm{k} \times 3.1 \times 104$ Allow 5.57×10 to 5.7×104
(b) (i) 2 or second or $[D]^{2}$
(ii) 0 or zero or $[E]^{\circ}$
(c) (i)

Step 1 or equation as shown
Penalise Step 2 but mark on
(ii)

or

Ignore correct partial charges, penalise full / incorrect partial charges

If Step 2 given above, can score the mark here for

allow: OH (must show lp)
If $\mathrm{S}_{\mathrm{N}} 2$ mechanism shown then no mark (penalise involvement of : OH in step 1) Ignore anything after correct step 1
4. (a) (i) An appropriate alkene; $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2}$ or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2}$

Isomer 1
Isomer 2
Position isomerism
Mechanism
electrophilic attack and electron shift to Br (Unless $\mathrm{H}+$ used)
carbocation
reaction with carbocation
[Allow mechanism marks for the alkene $\mathrm{CH}_{3} \mathrm{CHCHCH}_{3}$]
[Allow one mark if mechanism for minor product given]
(ii) An appropriate carbonyl; $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$

Mechanism nucleophilic attack and electron shift to O
anion intermediate
reaction with anion
[Allow mechanism marks for the carbonyl $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right]$

Isomer 1
Isomer 2

Optical isomerism
NB Isomer structures must be tetrahedral
NB Penalise "stick" structures once in part
(a)

1
(b) QoL

Large charge on carbonyl carbon atom due to bonding to O and Cl

Nucleophiles have electron pairs which can be donated
Equation Species
Balanced
5. (a) dimethylamine
(b) nucleophilic substitution

(c) quaternary ammonium salt
(cationic) surfactant / bactericide / detergent / fabric softener or conditioner/hair conditioner
(d)

(allow $\mathrm{CH}_{3} \mathrm{COOH}$ or $\mathrm{CH}_{3} \mathrm{COO}-\mathrm{NH}_{4}{ }^{+}$)
6. (a) (i) Moles $\mathrm{NaOH}=\mathrm{mv} / 1000=1.50 \times 72.5 / 1000=0.108$ to 0.11 (1) Moles of ethanoic acid at equilibrium = moles sodium hydroxide (1)

Moles ester = moles water (=moles acid reacted) (1) $=0.200-0.108=0.090$ to 0.092 (1)
Moles ethanol $=0.110-0.091=0.018$ to 0.020 (1)
$\mathrm{K}_{\mathrm{c}}=$ [Ester] [Water]/[Acid] [Alcohol] (1)
Allow if used correctly
$=(0.091)^{2} / 0.109 \times 0.019=3.7$ to 4.9 (1)
Ignore units
NB Allow the answer 4 one mark as correct knowledge
(ii) Similar (types) of bond broken and made (1)

Same number of the bonds broken and made (1)
any number if equal
NB If a list given then the total number of eacii type of bond broken and made must be tire same
(b) (i) (Weak) dipole-dipole attraction between 1 © 81 molecules (1) (Strong) hydrogen bonds between $\mathrm{CH}_{\mathrm{B}} \mathrm{COOH}$ molecules (1) NB Ignore van der Waals fores
(ii) Ethanoic anhydride is cheap compared to ethanoyl thloride (1)
less corrosive than ethanow ghloride or HCl evolved (1) reaction less violent or vigorous or exothermic or dangerous or safer to use (1)
less vulnerable to hydrolysis (1)
reaction more easily) controlled (1)
Max 2
7. (a) Yes, because it is oxidised to ethanal / $\mathrm{CH}_{3} \mathrm{CHO}$

OR it is oxidised to a compound that contains $\mathrm{CH}_{3} \mathrm{CO}$ group Ignore 'primary alcohols are oxidised to aldehydes'.
Need 'yes' and an explanation to be awarded the mark.
(b) $\mathrm{M}_{\mathrm{r}} \mathrm{CHI}_{3}=393.7$ (M1)

Allow if clearly shown in a calculation.
Allow 394
Moles $\mathrm{CHI}_{3}=10 / 393.7=2.54 \times 10^{2}$ (M2)
Allow a consequential answer on an incorrect M_{r}.
$2.54 \times 10{ }^{2}$ scores M1 and M2.
Moles $\mathrm{I}_{2}=7.62 \times 10^{2}(\mathbf{M 3})$

Allow $3 \times \mathbf{M}$.
Mass $\mathrm{I}_{2}=7.62 \times 10^{2} \times 253.8=19.34 \mathrm{~g}(\mathbf{M 4})$
Allow M3 $\times 253.8$ or $\mathbf{M 3} \times 254$
Scaling $19.34 / 0.832=23.2 \mathrm{~g}$ (M5)
Allow M4 / 0.832
Lose this mark if the answer is not given to $\underline{3}$ significant figures.
Answer without working scores M5 only. Allow any chemically correct alternative method.
Calculations which combine several steps in one expression can score the marks for all of these individual steps.
(c) Remove soluble impurities

Allow 'remove excess sodium hydroxide / iodine'.
Allow 'remove excess sodium methanoate / sodium iodide'.
Allow 'remove excess reagents'.
(d) Will not dissolve solid / solid is insoluble in water

Allow 'will not react with solid'.
8. (a) $\mathrm{Mg}+2 \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COOH} \quad\left(\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH}) \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2}$ Accept multiples, including fractions.
(b) Gas syringe / inverted burette over water / measuring cylinder over water

Collection apparatus must show graduations or be clearly labelled (eg syringe, burette, measuring cylinder).
9. Identification of acid by suitable method eg named indicator, named carbonate, specified reactive metal Ignore any reference to the smell of the ester.
with expected results
Do not allow the use of any instrumental method eg i.r. or n.m.r.; must be a chemical test.

Identification of alcohol by suitable method eg oxidation by acidified potassium dichromate(VI)
with expected results
[8]

1

