MEGA LECTURE A-LEVEL AP1 PAPER 2 MS 3.3×10^{-€} k = rate / [A]² or $(4.2 \times 10^{-3})^2$ **1.** (a) 1 = 1.87 or 1.9 Answer scores 2 -1.90 scores first mark only (incorrect rounding) 1 mol ¹dm³s ¹ Any order and independent of calculation 1 (b) Expt 2 rate = 1.167×10^{4} 1.2×10^{4} (mol dm ³ s ¹) If answers in table are not those given here, check their value of k in part (a) or use of alternative k. 1 Expt 3 [A] = 9.7×10^{3} $9.8(1) \times 10^{3}$ (mol dm ³) If their k is incorrect in part (a) mark this part consequentially e.g. if $k = 7.9 \times 10^{-3}$ due to lack of squaring in (a) Using alternative value for k expt 2 4.9 x 10.7 Expt 2 rate = $1.4(4) \times 10^{-4}$ (mol dm ³ s expt 3 1.5 ×10 ¹ √ Expt 3 [A] = 8.85×10^{-3} (mol dm $^{-3}$) (expt 2 6.24 × 10 5 × their k) (expt 3 0.0134 / K). 1 Slow step or rds involves only A (c) OR B does not appear in the slow step or the rds OR B only appears after the slow step or the rds Not B has no effect on the rate or B is not in the rate equation Allow "it" for B 1 [6] 2. (a) propyl methanoate; $HCOOC_{3}H_{7} + OH - HCOO + C_{3}H_{7}OH$ 1 OR $HCOOC_{3}H_{7} + NaOH$ $HCOONa + C_3H_7OH;$ 1 (b) order wrt A = 1; 1 order wrt NaOH = 1; 1 Initial rate in Exp $4 = 2.4 \times 10^{-3}$;

1

www.youtube.com/megalecture

1

2

MEGA LECTURE

(c) (i)
$$r(ate) = k[A]$$

OR
 $r(ate) = k[A][NaOH];$
(penalise missing [] but mark on)
(penalise missing [] but mark on)
(penalise missing [] but mark on)
(penalise missing [] once per paper)
(if wrong order, allow only units mark conseq
on their rate eqs)
(penalise k, or k, etc)
(ii) $k = \frac{9.0 \times 10^{-3}}{0.02};$
 $= 0.45;$
 $s \cdot ;$
(iii) (large) excess of OH or [OH] is large/high;
[OH] is (effectively) constant
OR
[A] is the limiting factor (Q of L mark)*
(A] is the limiting factor (Q of L mark)*
(a) (i) $k = \frac{8.4 \times 10^{-5}}{(4.2 \times 10^{-2})^2 \times 2.6 \times 10^{-2}}$
Mark is for insertion of numbers into a correctly
rearranged rate equ', $k = etc.$
If uside down, score only units mark from their
 k
 $AE(-1)$ (for copying numbers
 $= 1.8(3)$
mod drm s :
Any order
If k calculation wrong, allow units consequential
to their k = expression
(ii) $5.67 \times 10 \cdot (mol dm : s \cdot)$ OR their k $\times 3.1 \times 10 \cdot Allow 5.57 \times 10 \cdot to 5.7 \times 10 \cdot$
(b) (i) 2 or second or [D]:
(ii) 0 or zero or [E]:

3

www.youtube.com/megalecture

Page 3 of 9

MEGA LECTURE Step 1 or equation as shown (c) (i) Penalise Step 2 but mark on 1 CH₂ CH₃ (CH₃) (ii) OL Ignore correct partial charges, penalise full / incorrect partial charges If Step 2 given above, can score the mark here for (CH₃)₃C VOH allow: OH (must show lp) If S_N2 mechanism shown then no mark (penalise involvement of :OH in step 1) Ignore anything after correct step 1 1 [8] 4. An appropriate alkene; CH₃CH₂CHCH₂ or (CH₃)₂CCH₂ (a) (i) 1 Isomer 1 1 Isomer 2 1 Position isomerism 1 Mechanism electrophilic attack and electron shift to Br (Unless H+ used) carbocation 1 reaction with carbocation [Allow mechanism marks for the alkene CH₃CHCHCH₃] [Allow one mark if mechanism for minor product given] 1 (ii) An appropriate carbonyl; CH₃CH₂CHO 1 Mechanism nucleophilic attack and electron shift to O 1 anion intermediate 1 reaction with anion [Allow mechanism marks for the carbonyl $(CH_{3})_{2}CO]$ 1 Isomer 1 1 Isomer 2

4

WWW.MEGALECTURE.COM

Optical isomerism

- NB Isomer structures must be tetrahedral
- NB Penalise "stick" structures once in part

1

1

(a)

www.megalecture.com

5

Page 5 of 9

MEGA LECTURE

 (b) QoL Large charge on carbonyl carbon atom due to bonding to O and Cl
 Nucleophiles have electron pairs which can be donated
 Equation Species
 Balanced

- 5. (a) dimethylamine
 - (b) nucleophilic substitution

- 4 (c) quaternary ammonium salt (cationic) surfactant / bactericide / detergent / fabric softener or
 - conditioner/hair conditioner

(allow CH₃COOH or CH₃COO- NH₄*)

[10]

1

1

1

1

2

[18]

www.youtube.com/megalecture

MEGA LECTURE

6.	(a)	(i)	Moles NaOH = mv/1000 = $1.50 \times 72.5/1000 = 0.108$ to 0.11 (Moles of ethanoic acid at equilibrium = moles sodium hydrox (1) Moles ester = moles water (=moles acid reacted) (1) = $0.200 - 0.108 = 0.090$ to 0.092 (1) Moles ethanol = $0.110 - 0.091 = 0.018$ to 0.020 (1) K_c = [Ester] [Water]/[Acid] [Alcohol] (1) Allow if used correctly = $(0.091)^2/0.109 \times 0.019 = 3.7$ to 4.9 (1) Ignore units NB Allow the answer 4 one mark as correct knowledge	(1) ide	
		(ii)	Similar (types) of bond broken and made (1) <u>Same</u> number of the bonds broken and made (1) any number if equal NB If a list given then the total number of each type of bond broken and made must be the same		
	(b)	(i)	(Weak) <u>dipole-dipole</u> attraction between HCI molecules (1) (Strong) hydrogen bonds between CH ₂ COOH molecules (1 NB Ignore van der Waals forces)	
		(ii)	Ethanoic anhydride is cheap compared to ethanoyl chloride (1) less corrosive than ethanoyl chloride or HCl evolved (1) reaction less violent or vigorous or exothermic or dangerous or safer to use (1) less vulnerable to hydrolysis (1) reaction more easily controlled (1) Max 2		[13]
7.	(a)	Yes, t OR	because it is oxidised to ethanal / CH ₃ CHO it is oxid sed to a compound that contains CH ₃ CO group Ignore 'primary alcohols are oxidised to aldehydes'. Need 'yes' and an explanation to be awarded the mark.		
	(b)	<i>M</i> r C	CHI₃ = 393.7 (M1) Allow if clearly shown in a calculation. Allow 394	1	
		Mole	es CHI ₃ = 10 / 393.7 = 2.54 × 10 2 (M2) Allow a consequential answer on an incorrect M_{r} . 2.54 × 10 2 scores M1 and M2 .	1	
		Mole	$l_2 = 7.62 \times 10^{-2}$ (M3)	1	

7

www.youtube.com/megalecture

MEGA LECTURE	

		Allow 3 × M2 .				
		Mass I ₂ = 7.62 × 10 ² × 253.8 = 19.34g (M4) Allow M3 × 253.8 or M3 × 254	1			
		Scaling 19.34 / 0.832 = 23.2g (M5) Allow M4 / 0.832 Lose this mark if the answer is not given to <u>3</u> <u>significant figures</u> . Answer without working scores M5 only. Allow any chemically correct alternative method. Calculations which combine several steps in one expression can score the marks for all of these individual steps.	1			
	(c)	Remove <u>soluble impurities</u> Allow 'remove excess sodium hydroxide / iodine'. Allow 'remove excess sodium methanoate / sodium iodide'. Allow 'remove excess reagents'.	1			
	(d)	Will not dissolve solid / solid is insoluble in water Allow 'will not react with solid'. →	1	[8]		
8.	(a)	$\begin{array}{rll} Mg \ + \ 2C_{6}H_{4}(OH)COOH & (C_{6}H_{4}(OH)COO)_{2}Mg \ + \ H_{2} \\ & Accept \ multiples, \ including \ fractions. \end{array}$	1			
	(b)	Gas syringe / inverted burette over water / measuring cylinder over water Collection apparatus must show graduations or be clearly labelled (eg syringe, burette, measuring cylinder).	1	[2]		
9.	Identification of acid by suitable method eg named indicator, named carbonate, specified reactive metal <i>Ignore any reference to the smell of the ester.</i>					
	with	with expected results Do not allow the use of any instrumental method eg i.r. or n.m.r.; must be a <u>chemical</u> test.				
	lder pota	ntification of alcohol by suitable method eg oxidation by acidified assium dichromate(VI)	1			
	with	expected results	1			

www.youtube.com/megalecture

Page 8 of 9

[4]

Page 9 of 9

1

www.megalecture.com

9