A-LEVEL AP1 PAPER 1 MS

1. (a) (Enthalpy change to) break the bond in 1 mol of chlorine (molecules)

Allow (enthalpy change to) convert 1 mol of chlorine molecules into atoms
Do not allow energy or heat instead of enthalpy, allow heat energy

To form (2 mol of)_gaseous chlorine atoms / free radicals Can score 2 marks for 'Enthalpy change for the reaction':
$\mathrm{Cl}_{2}(\mathrm{~g}) \quad 2 \mathrm{Cl}(\mathrm{g})$
Equation alone gains M2 only
Can only score M2 if 1 mol of chorine molecules used in M1 (otherwise it would be confused with atomisation enthalpy)
Any mention of ions, $C E=0$
1
(b) (For atomisation) only 1 mol of chlorine atoms, fot 2 mol (as in bond enthalpy) is formed / equation showing $/ \mathrm{mol}$ chlorine giving 1 mol of atoms

Allow breaking of one bond gives two atoms
Allow the idea that atomisation involves
formation of 1 mol of atoms not 2 mol
Allow the idea that atornisation of chlorine
involves half the an sunt of molecules of
chlorine as doesuissociation
Any mentio(cfions, CE $=0$
(c) (i) $1 / 2 \mathrm{~F}_{2}(\mathrm{~g})+1 / 2 \mathrm{CH}_{2}$ (g) $\mathrm{CIF}(\mathrm{g})$
(ii) $\quad \mathrm{H}=1 / 2 \mathrm{E}(\mathrm{F}-\mathrm{F})+1 / 2 \mathrm{E}(\mathrm{Cl}$
$C l)=E(G \quad F)$
Allow correct cycle
Fi(Ol E) $=1 / 2 E(F-F)+1 / 2 E(C l C l) \quad H$ $+79+121$ (56)
$=256\left(\mathrm{~kJ} \mathrm{~mol}^{1}\right)$
256 s ceres zero
Ignore units even if wrong
(iii) $\quad 1 / 2 \mathrm{Cl}_{2}+3 / 2 \mathrm{~F}_{2} \quad \mathrm{ClF}_{3}$

If equation is doubled $C E=0$ unless correcr answer-gained by / 2 at end
This would score M1

$$
\begin{gathered}
\mathrm{H}=1 / 2 \mathrm{E}(\mathrm{Cl} \quad \mathrm{Cl})+3 / 2 \mathrm{E}(\mathrm{~F}-\mathrm{F}) \quad 3 \mathrm{E}\left(\mathrm{Cl} \mathrm{Fl}^{-}\right) \\
=121+237 \quad 768 /(\text { or } 3 \times \text { value from }(\mathrm{c})(\text { (ii) }) \\
\text { This also scores M1 (note }=358 \quad 768)
\end{gathered}
$$

```
= 410(kJ mol 1)
If given value of 223 used ans = 311
    Allow 1 / 3 for +410 and +311
```

(iv) (Bond enthalpy of) Cl F bond in CIF is different from that in ClF_{3}

Allow CI-F bond (enthalpy) is different in different compounds (QoL)
(d) NaCl is ionic / not covalent
2. (a) (i) $H=\Sigma$ bonds broken $-\Sigma$ bonds formed

$$
=944 / 2+3 / 2 \times 436-3 \times 388
$$

$$
=-38\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

ignore units even if incorrect correct answer scores 3

- 76 scores $2 / 3$ +38 scores 1/3
(ii) mean / average bond enthalpies are from a range of compounds
or
mean / average bond enthalpies differ from those in a single compound / ammonia
(b) $\quad S=\Sigma S$ products $-\Sigma S$ reactants
$=193-(192 / 2+131 \times 3 / 2)$
$=-99.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
units essential for M3
correct answer with units scores 3
-199 J K-1 $\mathrm{mol}^{-1} \&-99.5$ score 2/3
-199 and $+99.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ score $1 / 3$
(c) (i) $\mathrm{G}=\mathrm{H}-\mathrm{T} \quad \mathrm{S}=-46+800 \times 99.5 / 1000$
mark is for putting in numbers with 1000
if factor of 1000 used incorrectly $\mathrm{CE}=0$
$=33.6$ or 33600
allow 33 to 34 (or 33000 to 34000)
kJ mol-1 with J mol-1
correct units for answer essential
if answer to part (b) is wrong or if -112 used, mark consequentially e.g.
- - 199 gives 113 to $114 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (scores 3/3)
- - 112 gives 43 to $44 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (scores $3 / 3$)
(ii) If answer to (c) (i) is positive: not feasible / not spontaneous

If answer to (c) (i) is negative: feasible / spontareous
if no answer to (c) (i) award zero marks
3. (a) (i) Moles of $\mathrm{PCl}_{3}: 0.345-0.166=0.179$ (1)

Moles of Cl_{2} : $0.268-0.166=0.102(\mathbf{1})$
3 sig figs
(ii) 0.447 (1)
allow 2 sig figs conseq on (i)
(b) Mole fraction of $\mathrm{PCl}_{3}: 0.17910 .447$ (1) $=0.4(00)$ Partial pressure of $\mathrm{PCl}: \mathrm{DP}_{\mathrm{S}}=\mathrm{mol} \mathrm{f}_{\mathrm{n}} \times$ total P (1)

$$
=0.400 \times 225=90(\mathbf{1}) \mathrm{kPa}(\mathbf{1})
$$

(c)
(i)
\qquad
 (1)
ignore brackets except [] must show P 83.6
(ii) $\mathrm{K}_{\mathrm{p}}=\overline{90.1 \times 51.3}$ (1) $=1.8 \mathbf{(1)} \times 10^{-2} \mathbf{(1) ~ K p a - 1}$ (1) $\left(\right.$ or 1.81×10^{-5} $\left.\mathrm{Pa}^{-1}\right)$

If 83.6 and 51.3 wrong way round, AE - 1, answer $=6.81 \times 10^{-3}$ If $\mathrm{K}_{\mathrm{p}} \times$ in (i) allow $\max 2$ for substitution of numbers and conseq units
(d) (i) increased (1)
(ii) increased (1)
4. (a) The enthalpy change / heat energy change / $\Delta \vec{H}$ for the formation of one mole of (chloride) ions from (chlorine) atoms

Allow enthalpy change for $\mathrm{Cl}+\mathrm{e} \quad \mathrm{Cl}$
Do not allow energy change ionisation energy description is $C E=0$ Allow enthalpy change for the addition of 1 mol of electrons to Chlorine atoms
penalise Cl_{2} and chlorine molecules $\mathrm{CE}=0$ allow chlorine ions

Atoms and ions in the gaseous state
Or state symbols in equation
Cannot score M2 unless M1 scored except allow M2 if energy change rather than enthalpy change ignore standard conditions
(b) $\quad \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{e}+2 \mathrm{Cl}(\mathrm{g})(1)$ (M5)

Allow e for electrons (i.e. no charge)
State sympls essential
If no electrons allow M5 but not M3,M4

- If incorrect $1 / 2 \mathrm{Cl}_{2}$ used allow M3 and M4 for correct electrons (scores 2 / 6)
(c) $\quad \mathrm{H}_{\mathrm{f}}\left(\mathrm{M} \cdot \mathrm{gSI}_{2}\right)+\mathrm{H}_{\mathrm{a}}(\mathrm{Mg})+1^{\text {st }} \mathrm{IE}(\mathrm{Mg})+2^{\text {nd }} \mathrm{IE}(\mathrm{Mg})+2 \mathrm{H}_{\mathrm{a}}(\mathrm{CI})=$ 2EACCl $\mathrm{LE}\left(\mathrm{MgCl}_{2}\right)$

Allow Enthalpy of Formation = sum of other enthalpy changes (incl lattice formation)

$$
2 E A(C I)=642+150+736+1450+242 \quad 2493=727
$$

$\mathrm{EA}(\mathrm{Cl})=364\left(\mathrm{~kJ} \mathrm{~mol}{ }^{1}\right)$
Allow 363 to 364
Allow M1 and M2 for 727
Allow 1 (1 out of 3) for +364 or +363 but award 2 if due to arithmetic error after correct M2 _ Also allow 1 for 303
Units not essential but penalise incorrect units Look for a transcription error and mark as AE

1
(d) (i) Magnesium (ion) is smaller and more charged (than the sodium ion)
OR
magnesium (ion) has higher charge to size ratio / charge density

Do not allow wrong charge on ion if given
Do not allow similar size for M1
Do not allow mass / charge ratio
(magnesium ion) attracts water more strongly
Mark independently
Mention of intermolecular forces, (magnesium)
atoms or atomic radius $\mathrm{CE}=0$
(ii) Enthalpy change $=\mathrm{LE}\left(\mathrm{MgCl}_{2}\right)+\Sigma\left(\mathrm{H}_{\text {hyd }}\right.$ ions $)$ $=2493+(1920+2 \times 364)$
$=155\left(\mathrm{~kJ} \mathrm{~mol}^{1}\right)$
Units not essential but penalise incorrect units
5. (a) $\mathrm{KNO}_{3}(\mathrm{~s}) \quad \mathrm{K}+(\mathrm{aq})+\mathrm{NO}_{3}-(\mathrm{aq})$
do not allow equations wisth $\mathrm{H}_{2} \mathrm{O}$
allow aq and the word 'water' in equation
(b) increase in disorder because solid solution / increase in number of particles / 1 mol (solid) gives 2 mol (ions/particles) / particles are more mobile
allow random or chaos instead of disorder penalise if molecules/atoms stated instead of ions
allow any reference to increase in number of particles even if number of particles wrong
(c) $\quad \mathrm{G}=\mathrm{H}-\mathrm{T} \mathrm{S} / \mathrm{T}=\mathrm{H} / \mathrm{S}$
$\mathrm{T}=\mathrm{H} / \mathrm{S}=(34.9 \times 1000) / 117$
also scores M1
$=298 \underline{K}$
correct answer scores 3, units essential
0.298 scores M1 only
(d) (i) positive / increases / G >0

Allow more positive
(ii) if ans to (d) (i) positive, dissolving is no longer spontaneous / no longer feasible / potassium nitrate does not dissolve / less soluble
if ans to (d) (i) negative, dissolving is spontaneous / feasible / potassium nitrate dissolves / more soluble If no mention of change to $\Delta \mathrm{G}$ in (d)(i), Mark $=0$ for (d)(ii)
6. (a) (i) $\mathrm{H}=\Sigma$ (enthalpies formation products) Σ (enthalpies formation reactants)

Or correct cycle with enthalpy changes labelled
$=111$ ($75-242$)
$=(+) 206(\mathrm{~kJ} \mathrm{~mol} 1)$
206 scores 1 only
Units not essential if ansin kJ mol ${ }^{1}$ but penalise incorrect units
(ii) $\quad \mathrm{S}=\Sigma$ (entropies of products) $\quad \Sigma$ (entropies reactants) $=198+3 \times 131 \quad(186+189)$
$=(+) 216\left(\mathrm{~J} \mathrm{~K}^{1} \mathrm{~mol}{ }^{1}\right)$
OR
$0.216 \mathrm{~kJ} \mathrm{~K}^{1} \mathrm{~mol}^{1}$
Units not essential but penaise incorrect units
(b) When $G=0 \mathrm{OR} \quad \mathrm{H}=\mathrm{T} \quad \mathrm{S}$

$$
T=H / S_{M 2} \text { also scores M1 }
$$

$=206 \times 1000 / 216$
Allow error carried forward from (a)(i) and (a)(ii) Ignore unexplained change of sign from to +
$=954 \underline{K}$
Allow 953 955, Units of K essential, must be +ve If values from (a)(i) and (a)(ii) lead to negative value in M3 allow M1 to M3 but do not allow negative temperature for M4
If negative value changed to positive for M4, allow M4
(c) To speed up the rate of reaction OR wtte

Allow so that more molecules have energy greater than the activation energy
IF T in (b) > 1300 allow answers such as;
to reduce energy cost to slow down reaction do NOT allow to increase rate
(d) (i) Method 1
$G=H$ T S
$G=41 \quad\left(1300 \times{ }^{-} 42 / 1000\right)(\mathrm{M} 1)$ If 42 and not 42 / 1000 used can score M3 only but allow $\Delta G=41 \times 1000(1300 \times 42)$ (M1)
$=+13.6 \mathrm{~kJ} \mathrm{~mol}^{1}$
$=13600 \mathrm{~mol}^{1}{ }^{1}(\mathrm{M} 2)$
Units essential
G must be negative for the reaction to be feasible.
OR G is positive so reaction is not feasible
Method 2
For reaction to be feasible G must be negative or zero
T when $G=0=H / S=976 K$
S is ve so G must be +ve at temperatures above 976 K / at 1300 K
(ii) If the temperature is lowered
(Ignore reference to catalyst and / or pressure)
Alternative mark scheme (if T is calculated)
Allow T reduced to 976 K or lower M1

G will become (more) negative because the T S term will be less positive / T S> H At this temperature (the reaction becomes feasible because) $\Delta G<=0 \mathrm{M} 2$
7. (a) Standard pressure (100 kPa) (and a stated temperature) Allow standard conditions. Do not allow standard states Allow any temperature Allow 1 bar but not 1atm
Apply list principle if extra wrong conditions given
Penalise reference to concentration
(b) Hydrogen bonds between water molecales

Energy must be supplied in orderto break (or loosen) them
Allow M2 if intermolecular forces mentioned Otherwise cannescore M2
$\Delta \quad \Delta \quad \mathrm{CE}=0 / 2$ if ©o/alent or ionic bonds broken
(c) $\mathrm{T}=\mathrm{H} / \mathrm{S}$
-
$=(6.03 \times 1000) / 22.1$
$=273 \mathrm{~K}$
Allow 272 to 273; units K must be given
Allow $0^{\circ} \mathrm{C}$ if units given
0.273 (with or without units) scores $1 / 3$ only

Must score M2 in order to score M3
Negative temperature can score M1 only
(d) The heat given out escapes
(e) (Red end of white) light (in visible spectrum) absorbed by ice Allow complementary colour to blue absorbed

Blue light / observed light is reflected / transmitted / left Penalise emission of blue light 1
[9]

