

A-LEVEL AP1 PAPER 1 MS

1.	 (Enthalpy change to) break the bond in 1 mol of chlorine (molecules) 	
	Allow (enthalpy change to) convert 1 mol of chlorine molecules into atoms Do not allow energy or heat instead of enthalpy, allow heat energy	1
	To form (2 mol of)_gaseous chlorine atoms / free radicals Can score 2 marks for 'Enthalpy change for the reaction': $Cl_2(g)$ 2Cl(g) Equation alone gains M2 only Can only score M2 if 1 mol of chorine molecules used in M1 (otherwise it would be confused with atomisation enthalpy) Any mention of ions, $CE = 0$	
(b)	(For atomisation) only 1 mol of chlorine atoms, not 2 mol (as in bond enthalpy) is formed / equation showing // mol chlorine giving 1 mol of atoms Allow breaking of one bond gives two atoms Allow the idea that atom sation involves formation of 1 mol of atoms not 2 mol Allow the idea that atomisation of chlorine involves half the an ount of molecules of chlorine as does dissociation	1
(c)	Any mention of ions, $CE = 0$ (i) $\frac{1}{2}F_2(g) + \frac{1}{2}Ci_2(g)$ CIF(g)	1
(-)	(ii) H ==½E(F–F) + ½ E(Cl Cl)== E(Cl F)	1
	How correct cycle $E(CI = \frac{1}{2}E(F-F) + \frac{1}{2}E(CI CI) H$ $79 + 121 (56)$ $= 256 (kJ mol 1)$ $256 scores zero$ Ignore units even if wrong	1
	 (iii) ½Cl₂ + 3/2 F₂ CIF₃ If equation is doubled CE=0 unless correcr answer-gained by / 2 at end	1
	$H = \frac{1}{2} E(CI \ CI) + \frac{3}{2} E(F-F) \ 3E(CI \ F)$ = 121 + 237 768 / (or 3 × value from (c)(ii)) This also scores M1 (note = 358 768)	1
	1	

www.youtube.com/megalecture

MEGA LECTURE

2.

			= 410 (kJ mol 1)		1		
			If given value of 223 used ans = 311 Allow 1 / 3 for +410 and +311				
		(iv)	(Bond enthalpy of) <u>CI_F</u> bond in CIF is different from that in CIF ₃		1		
			Allow <u>CI-F</u> bond (enthalpy) is different in different compounds (QoL)		4		
	(d)	NaC	l is ionic / not covalent		1		
					1	[11]	
l	(a)	(i)	H = bonds broken – bonds formed	1			
			= 944/2 + 3/2 × 436 –3 × 388	1			
			= −38 (kJ mol-1)				
			ignore units even if incorrect				
			correct answer scores 3				
			–76 scores 2/3				
			+38 scores 1/3				
				1			
		(ii)	mean / average bond enthalpies are from a range of compounds				
			or mean / average bond enthalpies differ from those in a single compound / ammonia				
			•	1			
	(b)	S =	S products – S reactants				
				1			
		= 19	3 – (192/2 + 131 × 3/2)				
				1			
		= -9	9.5 J K-1 mol-1				
			units essential for M3				
			correct answer with units scores 3				
			–199 J K-1 mol-1 & –99.5 score 2/3				
			-199 and + 99.5 J K-1 mol-1 score 1/3	1			
	(\mathbf{c})	(i)	$G = H - T$ $S = -46 + 800 \times 99.5/1000$				
	(c)	(i)					
			mark is for putting in numbers with 1000				

www.youtube.com/megalecture

Page 2 of 10

3

WWW.MEGALECTURE.COM www.youtube.com/megalecture Page 3 of 10

MEGA LECTURE

The enthalpy change / heat energy change / *H* for the formation of one **4.** (a) mole of (chloride) ions from (chlorine) atoms Allow enthalpy change for CI + e Cl Do not allow energy change ionisation energy description is CE=0 Allow enthalpy change for the addition of 1 mol of electrons to Chlorine atoms penalise Cl_2 and chlorine molecules CE = 0allow chlorine ions 1 Atoms and ions in the gaseous state Or state symbols in equation Cannot score M2 unless M1 scored except allow M2 if energy change rather than

enthalpy change

ignore standard conditions

Page 4 of 10

(b) $Mg^{2+}(g) + 2e + 2CI(g)$ (1) (M5)

Page 5 of 10

whatsapp: e@gmail.com

:	Fahad	Har	need	+92	323	509	4443,	email:	: mega	lectu	ıre@g
				• • M		A L	ЕСТ	URE			
	(d)	(i)	sodiur OR magne densit (magr	esium (m ion) esium (Do not Do not Do not nesium Mark in Mentiol	ion) ha allow s allow s allow r ion) att depen n of int	as highe wrong c similar s mass / c tracts w dently ermole	er charge charge on size for M charge ra vater more	<i>tio</i> e strongly es, (magnes) / charge	1	
		(ii)	= 2493 = 15	3 + (1 5 (kJ m	920 + nol 1)	2×3	64)	(H _{hyd} ions) se incorrect u	units	1	
5	i. (a)	KNC	. ,		allow e	quation	ns with H₂ d 'water' .	.O in equation			
	(b)	numb	per of p cles are	articles more allow ra penalis ions allow a	s / 1 mo mobile andom e if mo ny refe	ol (solic or chae elecules	l) gives 2 os instead a/atoms si to increas	tion / increa mol (ions/pa d of disorder tated instead se in number rticles wrong	articles) / r d of r of	1	
	(c)	G =	∺ <i>H</i> -	T S/1	「= <i>H</i> ∥	'S				1	
		T =		= (34.9 also sc							
		= 298	—	correct 0.298 s				s essential		1	
	(d)	(i)	•	ve / incr <i>Allow n</i>			0			I	
		(ii)	sponta	aneous	/ no lo	nger fe		no longer otassium ole		1	

6

www.youtube.com/megalecture

MEGA LECTURE

1

[7]

1

1

1

1

6. (a) (i) H = (enthalpies formation products) (enthalpies formation reactants) - - - - Or correct cycle with enthalpy changes labelled

= 111 (75 -242)

= (+)206 (kJ mol 1) 206 scores 1 only Units not essential if ans-in kJ mol 1 but penalise incorrect units

(ii) S = (entropies of products) (entropies reactants) = 198 + 3 × 131 (186 + 189) = (+) 216 (J K ¹ mol ¹) OR

0.216 <u>kJ K</u>¹ <u>mol</u>¹ Units not essential but penalise incorrect units

WWW.MEGALECTURE.COM

Page 7 of 10

7

www.youtube.com/megalecture

MEGA LECTURE

(b)	When $G = 0$ OR $H = T$ S						
	T = H / S $M2 also scores M1$						
	= 206 × 1000 / 216 Allow error carried forward from (a)(i) and (a)(ii) Ignore une x plained change of sign from to +						
	= 954 K Allow 953 955, Units of K essential, must be +ve If values from (a)(i) and (a)(ii) lead to negative value in M3 allow M1 to M3 but do not allow negative temperature for M4 If negative value changed to positive for M4, allow M4						
(c)	To speed up the rate of reaction OR wtte Allow so that more molecules have energy greater than the activation energy IF T in (b) > 1300 allow answers such as; to reduce energy cost to slow down reaction do NOT allow to increase rate						
(d)	(i) Method 1 G = H T S $G = 41 (1300 \times 42 / 1000)$ (M1) $If 42 and not 42 / 1000 used can score M3 only but allow G = 41 \times 1000 (1300 \times 42)(M1) -$						
	1 = +13.6 <u>kJ mol</u> ¹ =13600 <u>J mol</u> ¹ (M2) Units essential						
	G must be negative for the reaction to be feasible. OR G is positive so reaction is not feasible						
	Method 2 For reaction to be feasible G must be negative or zero						
	T when $G = 0 = H / S = 976K$						
	S is ve so G must be +ve at temperatures above 976K / at 1300 K						
	(ii) If the temperature is lowered (Ignore reference to catalyst and / or pressure) <i>Alternative mark scheme (if T is calculated)</i> <i>Allow T reduced to 976 K or lower M1</i>						
	8						

www.youtube.com/megalecture

Page 8 of 10

9

www.youtube.com/megalecture

WWW.MEGALECTURE.COM

Page 9 of 10

(e) (Red end of white) <u>light</u> (in visible spectrum) <u>absorbed</u> by ice Allow complementary colour to blue absorbed

Blue light / observed light is reflected / transmitted / left Penalise emission of blue light

[9]

1

1

10