mob: +923235094443, email: megalecture@gmail.com Uncertainty

Scientific Method	Uncertainty	
1.	Observation	* units (metrics)
2.	Define the Problem	* measuring
3.	Test/Experiment	* sig. figs.
4.	Hypothesis	* Data
5.	Collect Data/Manipulate	Manipulation
6.	Conclusion	

3. Action = equal and opposite re -can't have only one force $\mathrm{F} \mathbf{a}, \mathrm{b}=-\mathrm{F} \mathbf{b}$,
 Normal Force
 able to change until breaking point of whatever it's holding
 acts perpendicularly to "holding" object - comes from ground (except water)
 Newtons
 $1 \mathrm{~N}=0.225 \mathrm{lbs}$
 Mass is constant
 $\mathrm{F}=\mathrm{ma}-----\mathrm{Fw}=\mathrm{mg} \quad \mathrm{N} \rightarrow \mathrm{kg}(/ 9.8)$
 Friction (Ff)
 $\mathrm{Kg} \rightarrow \mathrm{N}(\mathrm{x} 9.8)$

Accuracy vs. Precision

Accuracy - closeness of results to a standard
Precision - closeness of results to each other
use same piece of equipment to collect data

Qualitative vs. Quantitative

Qualitative - more on precision than accuracy
Quantitative - numbers count and are important

Sig. Figs.

Addition and Subtraction:
*least \# places after decimal
Multiplication:
*places after decimal count as sig. figs. $2.5 \mathrm{~cm}=1 \mathrm{in}$

Vectors
Vectors (velocity) - has BOTH magnitude and direction
Scalars (speed) - has magnitude ONLY
*time, mass, volume
Metric System Abbr.
$\mathrm{Mm}-\mathrm{km}-\mathrm{hm}-\mathrm{dkm}-\mathrm{m}$
$\mathrm{dm}-\mathrm{cm}-\mathrm{mm}-\mathrm{Mm}(\mathrm{E}-6)-\mathrm{nm}(\mathrm{E}-9)$

Mult. Component Vecctors
$1 . \quad 18 \mathrm{~m}$ due S
$2 . \quad 22 \mathrm{~m}, 47 \mathrm{deg} . \mathrm{S}$ of W
$3 . \quad 10 \mathrm{~m}, 78 \mathrm{deg}$. N of W
$4 . \quad 30 \mathrm{~m}$ due E

Equilibrium

Translational: the sum of forces equal zero
Rotational: the sum of torques equals zero Complete: must have BOTH
Center of Gravity : center of distribution of mass Torque

Force with leverage causes rotation Leverage: distance from fulcrum to force *Directly related to torque $\tau=\mathrm{F}$ (perp.) l

Circular Motion

Moving at a constant speed while accelerating
$\mathrm{A}=\mathrm{v} \rightarrow$ speed: constant
dxn: constantly changing

tripetal Acceleration

Inward seeking $\quad \mathrm{Ac}=\mathbf{V}^{2}$
Centripetal Force
Causes centripetal acceleration
$\mathrm{Fc}=\mathrm{mAc} \quad(\mathrm{F}=\mathrm{ma})$
$\mathrm{Fc}=\mathrm{m}_{\mathrm{m}} \mathbf{v}^{\underline{2}}$. (N)
You MUST have cent. F to keep something moving in a circle
Centrifugal: body's interpretation of cent. F DOES NOT EXIST \rightarrow feels inert:a
Rotation: spinning on axis within object
Revolution: spinning on axis outside of obje Linear / Angular

Linear : speed $=$ distance $/$ time \rightarrow rak us moters 57. $3 \mathrm{deg}=1$ RADIAN 1 rotation $=2 \pi$ Radians $=360$ dag.ees
Angular: speed $=\#$ rotations or eyolutions / time \rightarrow radius NOT matter

* by do ul lin the angular speed

Rotational Inertia
Resistance to begin or stop rotation

- Depends on amount of mass AND where it is placed
Solid Sphere $\rightarrow 2 / 5 \mathrm{mr}^{2} \quad$ Solid Disk $\rightarrow 1 / 2 \mathrm{mr}^{2}$ Hollow Sphere $\rightarrow 2 / 3 \mathrm{mr}^{2}$ Hollow Disk $\rightarrow \mathbf{1 ~ m r}$ - Velocity is indirectly related to Inertia
- Shape of object spinning makes the difference while spinning
3 Forces acting upon an object in circular motion

1. Centripetal Acceleration $\left(\mathrm{A}_{\mathrm{c}}\right)$
2. Angular Acceleration (α)
3. Linear Acceleration (a)

- Causes a change in motion (causes acceleration) Is a VECTOR quantity
Equilibrium - no acceleration, forces cancel, "at rest" Newton's Laws of Motion

1. An object at rest will remain at rest until acted upon by an outside force

INERTIA - directly related to mass
2. Acceleration is directly related to Force
indirectly related to mass

A change in momentum (how you feel p change)
Force: $\mathrm{F}=\mathrm{ma} \rightarrow \mathrm{F}=\mathrm{m} \underset{\boldsymbol{\Delta}}{\boldsymbol{\Delta} \mathrm{t}}$
Time : * hidden variable*
$\mathrm{F} \boldsymbol{\Delta} \mathrm{t}=\mathrm{m} \boldsymbol{\Delta} \mathrm{v}=\boldsymbol{\Delta} \mathrm{p}$
Conservation of Momentum
In the absence of an external force, the total
momentum of a system is constant

$$
\mathbf{m}_{1} \mathbf{v}_{1}+\mathbf{m}_{2} \mathbf{v}_{2}=\mathrm{m}_{1} \mathbf{v}_{1}+\mathbf{m}_{2} \mathbf{v}_{2}
$$

Work (J)

* Need to apply force $\quad \mathbf{W}=\mathbf{F} \mathbf{d}$
* implies motion

Power (watt -- w)
$\mathrm{P}=\frac{\mathrm{W}}{\mathrm{t}} .=\frac{(\mathrm{F} \mathrm{d})}{\mathrm{t}}$
$\frac{\mathrm{J}}{\mathrm{s}}=1 \mathrm{~W}=\frac{\mathrm{Nm}}{\mathrm{s}}=\frac{1 \mathrm{~kg} \mathrm{~m}^{2}}{\mathrm{~s}^{2}}$
1 horse power $=746 \mathrm{w}$
Energy
Ability to do work
Mechanical: energy of motion or position
Kinetic (K) : motion $\mathrm{K}=1 / 2 \mathrm{~m} v^{2} \quad(\mathrm{~J})$
Potential (U) : position
$\mathrm{U}=\mathrm{mgh} \quad$ (J) $\quad(\mathrm{W}=\mathrm{F} \mathrm{d})$
When not given distance...(or force)
$\mathrm{W}=1 / 2 \mathrm{~m} v^{2}-1 / 2 \mathrm{~m} v_{0}{ }^{2}(\mathrm{~W}=\Delta \mathrm{K})$
(K final) - (K initial)

Conservation of Energy

Energy change from one to the other w/o any net loss $U_{\text {тор }}=\mathrm{K}_{\text {вот }} \quad\left(\mathrm{mgh}=1 / 2 \mathrm{mv}^{2}\right)$

Wave Motion

Simple Harmonic Motion

A repeating motion in which the acceleration is directly related to the displacement (distance
the equilibrium) and always directed towards

equilibrium.

Cosine Curves
$Y=A \cos B(x-C)+D$
$\mathrm{A}=$ amplitude (0) : ho N Puch energy it has
$\operatorname{CosB}=$ period (2 PIE 1) Ime, 1 oscillation
C = horz. Shift : h man error
$\mathrm{D}=$ vert. Shift : disharke, to x -axis
Waves

* Graphed S HM transfer of energy

Vibration: WORK to get energy
Propagates: What energy moves through
$\frac{\text { inechanical (light) }}{\text { Nefds a medium }} \quad \frac{\text { Electromagnetic (sound) }}{\text { does NOT need a medium }}$
Nefds a medium \quad does NOT need a medium
Ie hanical Waves
Transverse : medium vibrates perp. to energy
Most common ex. Guitar string, slinky
Longitudinal : medium vibrates para. to energy
Has compressions ex: sound
Surface : both para. and perp. to energy "physics bob" ex: earthquakes, waves

Principle of Superposition

Constructive Interference : added
Deconstructive : subtracting (adding negatives)
$V=\frac{\lambda}{\mathrm{T}}-\quad \mathrm{V}=\lambda f$
Standing Wave
A continuous wave train of equal amplitude (RAD), wavelength (m), and frequ. $(\mathrm{Hz})(/ \mathrm{sec})$ in the same
medium creating nodes and antinodes.
Boundary : change in medium
(part of energy gets reflected, part gets absorbed)
rigidity : how much energy gets ABSORBED close rigidity \rightarrow more absorbed
different rigidity \rightarrow more reflected

Interference in Diffraction

Crest + crest $=$ antinode \quad Crest + troph $=$ node

Sound

A range of longitudinal wave frequ. to which the
human ear is sensitive
Infra sonic sonic spectrum ultra sonic
(below 20 Hz)) $\quad(20 \mathrm{~Hz}-20,000 \mathrm{~Hz}) \quad(20,000 \mathrm{~Hz}+)$

1. production : needs vibration
2. transition : needs a medium \rightarrow air
3. reception : must be heard
V sound $\equiv \mathbf{3 4 0} \mathrm{m} / \mathrm{s}$
V sound $=331+.6$ (Temp.)
Intensity: measurable
How loud a sound is * the time of flow of energy per unit area
$\mathbf{I}=\underline{\text { Pow } .} \quad(\mathbf{P}=\underline{\mathbf{W})}$
Amp t
Intensity is DIRECTLY related to amplitude
Damping : further you get from the center \rightarrow quieter
it will be
Inverse Square Law: $\mathbf{I}_{1} \mathbf{r}_{1}{ }^{2}=\mathbf{I}_{2} \mathbf{r}_{2}{ }^{2}$

Volume (B): subjective (decibels)
Relative Intensity Level \rightarrow loudness level

Volume is DIRECTLY related to Intensity Volume is DIRECTLY related to Frequency f standard $=1,000 \mathrm{~Hz}$.
Intensity Range
Threshold of hearing (Io) $=1 \times 10^{-12} \mathrm{w} / \mathrm{m}^{2}$
Threshold of sound $=1 \mathrm{w} / \mathrm{m}^{2}$ $\left.\beta=10 \log \frac{\mathrm{I}}{1 \times 10^{-12} \mathrm{w} / \mathrm{m}^{2}}\right)$
"How many powers of 10 are in that number?" Decibel $=\frac{\mathbf{w} / \mathbf{m}^{2}}{\mathbf{w} / \mathbf{m}^{2}}$.

Pitch and Tone

$\mathrm{I} \rightarrow$ volume $\quad f \rightarrow$ pitch
Notes and tones: pitch with recognizable frequencies Laws of Pitch:

1. f is INDIRECTLY related to length
2. f is DIRECTLY related to tension (Ft)
3. f is INDIRECTLY related to diameter (d)
4. f is INDIRECTLY related to density (D)

Beats : the resultant interference pattern of 2 notes close in frequency but not exact
Doppler Effect : the apparent change in frequency of a sound due to the relative motion of either the observer a sound due to the rel
or the source of both

Resonate : when you cause something to vibrate at

its natural frequency

Music \rightarrow repeating wave pattern
Noise \rightarrow no repeating wave pattern
Consonance \rightarrow sounds GOOD
Dissonance \rightarrow sounds BAD
Decibel:

$\xrightarrow[\text { Natural Frequencies }]{ } l=170 / 120 \mathrm{db}$

Brass/String n name synm wavl $(\lambda) \quad 1 \quad \mathrm{f}$ | f | fund. | $1^{\text {st }}$ | har. | $2 l$ | $1 / 2 \lambda$ | $\mathrm{v} / 2 l$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f 2$ | $1^{\text {st }} \mathrm{ov}$. | $2^{\text {nd }}$ | har. | l | λ | v / l | $\begin{array}{llllrr}f 2 & 1^{\text {st }} \text { ov. } & 2^{\text {nd }} & \text { har. } & l & \lambda \\ f 3 & 2^{\text {nd }} \text { ov. } & 3^{\text {rd }} & \text { har. } & 2 / 3 l & 3 / 2 \lambda \\ f & 3 \mathrm{v} / 2 l\end{array}$ $f 4 \quad 3^{\text {rd }}$ ov. $4^{\text {th }}$ har. $\quad 1 / 2 l \quad 2 \lambda \quad 2 \mathrm{v} / l$

Woodwind $n \frac{n}{2 l}$ name synm $\left.\quad n \quad \frac{2 l}{n}-f_{n}=N\right)^{2}$

Woodwind | n | name | synm | | $\operatorname{wavl}(\lambda)$ | 1 | f |
| :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| f | fund. | $1^{\text {st }}$ har. | $4 l$ | $1 / 4 \lambda$ | $\mathrm{v} / 4 l$ | |

 $f \mathrm{n}=\underline{\mathrm{n}} \mathrm{v} \quad \mathrm{hn}=\underline{4 l}$

Instruments

String
Produced by: plucking string, bowing
Change pitch : length, diameter, tension, density
Produce by : buzzing mouth piece
Change pitch : length of pipe (valves), buzzing
Woodwind
Produced by : reed vibrating
Change pitch : pads, holes
Edge tones: narrow streams of air split by edge
Helmholtz Resonance: edge tone with bottle (open
hole)
$\underline{\text { Light }}$
Particle

+ Newton said so Wave
+ Beams/Waves + reflection, refraction,
+ travel in straight lines diffraction, interferen
+ Hertz - light is energy
+ Einstein - wave particle duality
Polarized Light: Light oriented to one plane (calc.)
Liquid Filter Display : lets only one degree of light in

Visible Spectrum

Radio * Micro * Infrared * Ultraviolet * Xrays* Gamma
Big wavelength $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ Small wavelength
$\mathrm{R}_{\mathrm{ed}} \mathrm{O}_{\text {range }} \mathrm{elllow}^{\text {Green }} \mathrm{B}_{\text {lue }} \mathrm{I}_{\text {ndigo }} \mathrm{V}_{\text {iolet }}$
Transparent: see through it and light passes
(Windows, glass)
Translucent: can NOT see through it, light passes (frosted glass)
Opaque : can NOT see through it, NO light passes
Source: makes and emits light
Luminous: sun
Luminate: moon
Light Year: takes 8.3 min . to get light from sun Dispersion: breaking up light into colors (prism)

Colors

Cones in eye pick up 3 primary colors of light
Additive.

$\frac{\text { Primary }}{\text { BLUE }}$	Secondary
RED	YELLOW
GREEN	CYAN
* More than one light source	

mob: +92 3235094443 , email: megalecture@gmail.com

* Brighter colors	
Subtractive	
Primary	Secondary
YELLOW	BLUE
CYAN	RED
MAGENTA	GREEN
* only one light source * darker colors	

Hue: proportion of color
Saturation : amount of white mixed with color Brightness : amount of black mixed with color Reflection

$$
\text { Smooth: } \theta_{\mathrm{i}}=\theta_{\mathrm{r}}
$$

Diffuse : "scatters light" obeys laws still
Refraction
Index of Refraction $\quad n=\underline{3 \times 10^{8}}$
(speed in whatever medium)
Air: $1.00 \quad$ Water:1.33 Glass:1.52
Snell's Law
$* \mathrm{n}$ is INDIRECTLY related to θ
$* \mathrm{n}$ is INDIRECTLY related to speed
${ }^{*} \boldsymbol{v}$ is $\frac{\text { DIRECTLY related to } \theta}{\mathrm{n}_{1} \sin } \theta_{1}=\mathbf{n}_{2} \sin \theta_{2}$

Lasers

Critical angle $\left(\theta_{\mathrm{c}}\right)$: the θ_{I} that produces the angle that is larger than θ_{c}.
Total Internal Reflection: no refraction

[EX] How much momentum does a 6.0 kg
object have if it is moving at $3.0 \mathrm{~m} / \mathrm{s}$? What force would it take to bring it to rest
in 2.0 seconds?

[EX] An $18{ }^{\text {cmatifllywheel slows from } 8.0}$ rev/sec to 3.0 rev/sec over a 3.5 second
 ration \& its angular \& linear displacements.

$$
\begin{aligned}
& \text { (5.) (gen) } \quad f_{1}=\frac{N r}{2 l}=\frac{(1)(344)}{(2)(.86)}=200 \\
& l=.83 \mathrm{~m}
\end{aligned}
$$

If you have this	$\underline{\text { Do this }}$	To get this
N	$\times .225$	lb.
lb.	$\div .225$	N
N	$\div 9.8$	Kg
Kg	$\times 9.8$	N

$$
\begin{aligned}
& r=344 \mathrm{~m} / \mathrm{s} \\
& \frac{f_{1}=? \mathrm{~Hz}}{(\text { closed })} \\
& f_{1}=? \mathrm{~Hz}_{z}
\end{aligned} \quad\left(\begin{array}{l}
f_{1}=\frac{\mathrm{Nr} \mathrm{ta} / \mathrm{mudel}}{4 l}=\frac{(1)(344)}{(4)(.86)}=100 \\
f_{1}=300 \mathrm{~Hz}
\end{array}\right.
$$

