TOPIC 10 TEST MS

1. (a) $\quad \mathrm{CaF}_{2}(\mathrm{~s}) \quad \mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{~F}-(\mathrm{g})$
(b) (i) Enthalpy change for formation of 1 mol of substance Allow heat energy change, NOT energy

From its elements
1

Reactants and products/all substances in their standard states Or normal states at $298 \mathrm{~K}, 1$ bar (100 kPa)
(ii) $\quad \mathrm{Ca}(\mathrm{s})+\mathrm{F}_{2}(\mathrm{~g}) \quad \mathrm{CaF}_{2}(\mathrm{~s})$
(iii) $\quad H_{t}\left(\mathrm{CaF}_{2}\right)=\mathrm{H}_{\mathrm{a}}(\mathrm{Ca})+1 \mathrm{st} \operatorname{IE}(\mathrm{Ca})+2^{\text {nd }} \mathrm{IE}(\mathrm{Ca})+\mathrm{BE}\left(\mathrm{F}_{2}\right)+$ $2 \times \mathrm{EA}(\mathrm{F})-\mathrm{H}_{\llcorner }\left(\mathrm{CaF}_{2}\right)$

Or labelled diagram
$=193+590+1150+158+(2 \times-348)-2602$
$=-1207 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Correct answerseores 3
-842 score 2 (transfer error)

- 859 scores 1 only (using one E.A.)

Units riat required, wrong units lose 1 mark
(c) Electrostatio ttraction stronger/ionic bonding stronger/attraction between ions stronger/more energy to separate ions

Molecular attraction/atoms/intermolecular forces CE=0

Because fluoride (ion) smaller than chloride Do not allow F or fluorine
(d) (i) $\mathrm{H}=\mathrm{H}_{\llcorner }+\sum \mathrm{H}_{\text {nyd }}=2237-1650+(2 \times-364)$

Can be on cycle/diagram
$=-141 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Correct answer scores 2
Units not required, wrong units lose 1 mark
(ii) Decreases

If ans to (d)(i) positive allow increases
(Equilibrium) shifts to left/backwards (as temperature rises)/equilibrium opposes the change

If (d) (i) +ve allow shifts to right/forwards/equilibrium opposes the change If no answer to (d) (i) assume -ve $\Delta \mathrm{H}$ used If effect deduced incorrectly from any $\triangle \mathrm{H} C E=$ 0 for these 3 marks
2. (a) (i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
(ii) The negative S- ion
repels the added electron
(iii) Step B is the atomisation enthalpy of sulphur

Step D is the second ionisation enthalpy of calcium
(iv) Electrons nearer to the nucleus

Electrons removed from a positive species or more strongly attracted
(v) $\quad+178+279+590+1145-200+539+G+482=0$
$G+3013=0$ hence $G=-3013$
(b) The model used assumes the ions are spherical and in a lattice

1
The calculated value is smaller than the cycle value or stronger attraction

Indicating some covalent character or ions are polarised
(c) (i) For a reaction to occur $\mathrm{G}<0$

S is positive and large as a gas is evolved
$T S$ is larger than H and G is negative
(ii) S is negative

Three moles of gaseouls reactant forming two moles of gaseour p pduct

At high temperature T S is larger than H and G is positive
3. (a) $H=\Sigma H_{t}$ (products) $-\Sigma H_{t}$ (reactants)

$$
\begin{aligned}
= & -201-242-(-394) \\
= & -49 \mathrm{~kJ} \text { mol- }-1 \\
& +49 \mathrm{~kJ} \mathrm{~mol}-1=1 \text { mark } \\
& \text { units not required, wrong units lose } 1 \text { mark }
\end{aligned}
$$

(b) $\quad \mathrm{S}=\Sigma \mathrm{S}$ (products) $-\Sigma \mathrm{S}$ (reactants)

$$
\begin{aligned}
& =238+189-(214+3 \times 131) \\
& =-180 \mathrm{~J} \mathrm{~K}-1 \text { mol-1 } \\
& \quad+180=1 \text { mark } \\
& \quad \text { units not required, wrong units lose } 1 \text { mark }
\end{aligned}
$$

(c) $\quad \mathrm{G}=\mathrm{H}-\mathrm{T} \mathrm{S}$

If use G not ΔG penalise $M 1$ but not $M 2$ and M3
(S is negative so) at high temp -T S (is positive and) greater than H/large

Do not award M2 or M3 if positive ΔS value used

So $G>0$
Independent mark unless positive $\Delta \mathrm{S}$ value used
(Limiting condition $\mathrm{G}=0$ so) $\mathrm{T}=\mathrm{H} / \mathrm{S}$
$=272 \mathrm{~K}$
Allow 297-298 if used given values. Do not award M5 if T -ve or if 'M, 4 should give T-ve

Reaction is too stow at this temperature/to speed up the reaction
(d)

Allow multiples
Ignore state symbols.
Do neallow equation for wrong compound but mark on provided number of moles increases or stays the same.
Vis no equation or equation that gives a decrease in the number of moles, CE $=0$
2.5 mol give 3 mol (gases)

Allow statement 'increase in number of moles/molecules' If numerical values given, they must match the equation in M1 Ignore the effect of incorrect state symbols on the number of moles of particles unless used correctly

Therefore S is positive/entropy increases
If correct deduction from wrong equation is $\Delta S=0$ or ΔS very small
(combustion exothermic so H -ve so $\mathrm{H}-\mathrm{T}$ S) and hence G always negative (less than zero)

Allow G instead of ΔG
Can score 3 out of 4 marks if equation wrong but leads to
M4 dependent on M3
Note, if equation wrong AND there is an incorrect deduction
about the change in number of moles, $\mathrm{CE}=0$
4. A

