TOPIC 10 HW MS

1. (a) Enthalpy change/heat energy change when one mole of gaseous atoms

Allow explanation with an equation that includes state symbols

Form (one mole of) gaseous negative ions (with a single charge)
If ionisation/ionisation energy implied, $\mathrm{CE}=0$ for both marks Ignore conditions
(b) Fluorine (atom) is smaller than chlorine/shielding is less/ outer electrons closer to nucleus

Fluorine molecules/ions/charge density $\mathrm{CE}=0$ for both marks
(Bond pair of) electrons attracted more strongly to the nucleus/protons
(c) Fluoride (ions) smaller (than chloride) / have largel charge density Any reference to electronegativity $C E=0$

So (negative charge) attracts ($\delta+$ hydroger on) water more strongly
Allow H on water, do notallew 0 on water
Allow F - hydrogen bonds to water, chloride ion
Δ
does not Mark independentix,
(d) (i) H (solution) $=\mathrm{LE}$ - Chydration enthalpies) / correct cycle AgF_{2} or otherwrong formula $\mathrm{CE}=0$ Ignore seate symbols in cycle
$L E=-20-(-464+-506)$
$=(+$ 皆 $50 \mathrm{~kJ} \mathrm{~mol}-1$
Ignore no units, penalise M3 for wrong units -950 scores max 1 mark out of 3
990 loses M3 but M1 and M2 may be correct 808 is transfer error (AE) scores 2 marks 848 max 1 if M1 correct $1456 \mathrm{CE}=0$ (results from AgF_{2})
(ii) There is an increase in the number of particles / more disorder / less order

Allow incorrect formulae and numbers provided number increases
Do not penalise reference to atoms/molecules Ignore incorrect reference to liquid rather than solution
(iii) Entrppy change is positive/entropy increases and enthalpy change negative/e xo thermic

So G is (always) negative
2. (a) Because it is a gas compared with solid carbon Mark independently

Nitrogen is more disordered/random/chaotic/free to move
(b) $0 \mathrm{~K} /-273$ C/absolute zero
(c) $\quad \mathrm{G}=\mathrm{H}-\mathrm{T} \mathrm{S}$ Allow $\Delta H=\Delta G-T \Delta S$
$\mathrm{T} \Delta \mathrm{S}=\Delta \mathrm{H}-\Delta \mathrm{G}$
$\Delta S=(\Delta H-\Delta G) / T \quad \leq$ Ignore θ in $\Delta \mathrm{G}$ 。
G is less than or equal to zero ($G \quad 0$)
Allow $\Delta \mathrm{G}$ is less than zero $(\Delta \mathrm{G}<0)$
Allow ΔG is equal to zero ($\Delta \mathrm{G}=0$)
Allow $\Delta \mathrm{G}$ is negative
(e) When $G=0 \mathrm{~T}=\underline{\mathrm{H} / \mathrm{S}}$

$$
\begin{array}{r}
H=+90.4 \\
\text { Allow } \Delta H=+90
\end{array}
$$

$$
S=\Sigma S(\text { products })-\Sigma S(\text { reactants })
$$

$$
S=211.1-205.3 / 2-192.2 / 2=\underline{12.35}
$$

$\mathrm{T}=(90.4 \times 1000) / \mathbf{1 2 . 3 5}=\mathbf{7 3 2 0} \mathrm{K} / 7319.8 \mathrm{~K}$
Allow 7230 to 7350 K (Note 7.32 K scores 4 marks)
Units of temperature essential to score the mark
(f) Activationenergy is high

Allow chemical explanation of activation energy Allow needs route with lower activation energy Allow catalyst lowers activation energy
(g) $\quad \mathrm{H}=1.9\left(\mathrm{~kJ} \mathrm{~mol}_{-1}\right)$

for M1 and M2 allow no units, penalise wrong units
G is always positive

This mark can only be scored if $\Delta \mathrm{H}$ is +ve and ΔS is -ve
3. (a) Enthalpy change for the formation of 1 mol of gaseous atoms allow heat energy change for enthalpy change

From the element (in its standard state) ignore reference to conditions

Enthalpy change to separate 1 mol of an ionic lattice/solid/compound enthalpy change not required but penalise energy

Into (its component) gaseous ions
mark all points independently
(b)

$$
\mathrm{H}_{\mathrm{L}}=-\mathrm{H}_{\mathrm{t}}+\mathrm{H}_{\mathrm{a}}+\mathrm{I} . \mathrm{E} .+1 / 2 \mathrm{E}(\mathrm{Cl}-\mathrm{Cl})+\mathrm{EA}
$$

Or correct Born-Haber cycle drawn out

$$
=+411+109+494+121-364
$$

$$
=+771\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

-771 scores $2 / 3$
+892 scores $1 / 3$

- 51 scores $1 / 3$
- 892 scores zero
+51 scores zero ignore units
(c) (i) lons are perfect spheres (or point charges)

Only electrostatic attraction/no covalent interaction mention of molecules/intermolecular forces/covalent bonds
CE =0
allow ionic bonding only
If mention of atoms $\mathrm{CE}=0$ for M2
(ii) Ionic

Allow no covalent character/bonding
(iii) Ionic with additional covalent bonding

Or has covalent character/partially covalent Allow mention of polarisation of ions or description of polarisation
4. (a) (i) (Enthalpy change for formation of) 1 mol (of CaF_{2}) from its ions allow heat energy change
do not allow energy or wrong formula for CaF_{2}
penalise 1 mol of ions
$C E=0$ if atoms or elements or molecules
mentioned
ignore conditions
ions in the gaseous state
ions can be mentioned in M1 to score in M2
allow fluorine ions
$\mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{~F}-(\mathrm{g}) \quad \mathrm{CaF}_{2}$ scores M1 and M2
(ii) (enthalpy change $\overrightarrow{\text { when }} 1 \mathrm{~mol}$ of gaseous (fluoride) ions (is converted) into aqueous ions / an aqueous solution
allow F-(g) $\quad \mathrm{F}$-(aq) (ignore +aq)
do not penalise energy instead of enthalpy
allow fluorine ions
do not allow F - ions surrounded by water
(b) water is polar / H on water is $\delta+/$ is electron deficient / is unshielded penalise $\mathrm{H}+$ on water 1 mark
(F - ions) attract water / $\delta+$ on $\mathrm{H} /$ hydrogen
allow H on water forms H -bonds with F . allow fluorine ions penalise co-ordinate bonds for M2 penalise attraction to 0 for M2
(c)

$$
\begin{aligned}
& H=-(-2611)-1650+2 x-506 \\
& \text { ignore cycles } \\
& \text { M1 is for numbers and signs correct in } \\
& \text { expression }
\end{aligned}
$$

$=-51\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
correct answer scores 2
ignore units even if incorrect
5.

$$
S=\Sigma S \text { products }-\Sigma S \text { reactants }
$$

$$
S=(259+187)-(201+161)
$$

$$
\mathrm{S}=84 \text { (JK-1 mol-1) (Ignore units) }
$$

Allow - 84 to score (1) nayk
$G=H-T S$
$=-21.6-298 \times 84 / 1000$
$=-46.6 \mathrm{~kJ}$ mol or $-46600 \mathrm{~J} \mathrm{~mol}^{-1}$
Allow for - 46.6 without units (Mark ΔG consequentially to incorrect ΔS) ($e . \mathrm{g} \cdot \Delta \mathrm{S}=-84$ gives $\Delta \mathrm{G}=+3.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$)
6.
(a) $\quad G=H$

H T S
Or expression $\Delta H \quad T \Delta S$ must be evaluated
If G / expression $<=0$ reaction is feasible
Or any explanation that this expression $<=0$ Do not allow just $\Delta \mathrm{G}=0$
(b) The molecules become more disordered / random when water changes from a liquid to a gas / evaporates

For M1 must refer to change in state AND increase in disorder

Therefore the entropy change is positive / Entropy increases

Only score M2 if M1 awarded
T S> H
Allow M3 for T is large / high (provided M2 is scored)
$\mathrm{G}<0$
Mark M3, M4 independently

MEGA LECTURE

(c) (i) Condition is $\mathrm{T}=\mathrm{H} / \mathrm{S}$

$$
S=\overline{189} \quad 205 / 2 \quad 131=44.5
$$

$H=242$ therefore $T=(242 \times 1000) / 44.5)$
$=5438 \mathrm{~K}$ (allow $5400 \quad 5500 \mathrm{~K}$)
Units essential (so 5438 alone scores 3 out of 4)

2719 K allow score of 2
5.4 (K) scores 2 for M1 and M2 only

1646 (K) scores 1 for M1 only
(ii) It would decompose into hydrogen and oxygen / its elements

Can score this mark if mentioned in M2
Because G for this reaction would be <=0
Allow the reverse reaction / decomposition is feasible
Only score M2 if M1 awarded
(d) $\quad \mathrm{H}=\mathrm{T}$ S

- Allow-correct substituted values instead of symbols

$$
\mathrm{S}=7 \overline{0} \quad 189=119 \mathrm{JK} \cdot \overline{\mathrm{~mol}}_{1}^{-}
$$

$H=(119 \times 373) / 1000=44.4 \mathrm{~kJ}(\mathrm{~mol}$ i) (allow 44 to 45$)$
Allow 44000 to $45000 \mathrm{~J}\left(\mathrm{~mol}^{1}\right)$
Answer musthaye correct units of kJ or J
7. (a) Standard enthalpy change, $\Delta H^{\boldsymbol{\Theta}}: \mathrm{H}_{\mathrm{R}}=\Sigma \mathrm{H}_{\text {frootucts }}-\Sigma \mathrm{H}_{\text {freacanis }}$ (1)

$$
\begin{aligned}
& \left.\mathrm{H}_{\mathrm{R}}=(0-2 \times-242]\right)-(4 \times-92) \\
& \text { or cycle } \\
& =-484+368 \\
& =-116\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\
& \text { Allow max } 1 \text { for }+116 \\
& \text { Standard entropy change, } \Delta \mathrm{S}^{\boldsymbol{\vartheta}}: \quad \mathrm{S}=\Sigma \mathrm{H}_{\text {frooducts }}-\Sigma \mathrm{H}_{\text {freacants }} \\
& \text { S = ([2 } \times 223]+[2 \times 189])-(205+[4 \times 187])(\mathbf{1}) \\
& =824-953 \\
& =-129\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)
\end{aligned}
$$

allow max one for +129
(b) (i) Effect: Equilibrium displaced to right / to products (1)

Explanation: Reaction is endothermic (1)
Constraint reduced (1)
mark separately
(ii) Feasible when $G \leq 0$ (1)

$$
\Delta G=H-T S(\mathbf{1})
$$

$$
T=H / S=208 \times 1000(\mathbf{1}) / 253
$$

$$
=822 \mathrm{~K} \text { (1) }
$$

8. C
9. C
