Mind Map

Quadratic Equation

In mathematics, a quadratic equation is a polynomial equation of the second degree, The general form is

$$ax^2+bx+c=0$$

where $a \neq 0$. (For a = 0, the equation becomes a linear equation.)

The letters a, b, and c are called coefficients: the quadratic coefficient a is the coefficient of x2, the linear coefficient b is the coefficient of x, and c is the constant coefficient, also called the free term or constant term.

Example of Quadratic Equation

 $2x^2 - 5 = 0$ $1 - 6x^2 = 3$ $6x + 3x^2 = 0$ $x^2 = 0$

Difference Between Quadratic Eqaution and **Quadratic Function**

Quadratic Functions	Quadratic Equations
$y = x^2 - 3x + 2$	$x^2 - 3x + 2 = 0$
$f(x) = x^2 - 3x + 2$	

Solving Quadratic Equation

3 Methods:

- Factorisation
- Completing The Square
- Quadratic Formula

Factorisation

1	L 1		1011		1
<u>e.g.1:</u>	\times \times +	<u>e.g.2</u> :	×	×	+
$x^2 - 3x + 2 = 0$	x -1 -x	$x^2 + 2x - 360 = 0$	x	+20-	-18x
(x-1)(x-2)=0	x - 2 - 2x	(x+20)(x-18)=0	x	-18-	+20x
x = 1(a) 2 #	x^2 +2 -3x	x = 18(a) - 20 #	x^2	-360	+2x

Example

Solve $x^2 + 5x + 6 = 0$.

Answer

 $x^{2} + 5x + 6 = (x + 2)(x + 3)$

Set this equal to zero: (x + 2)(x + 3) = 0

Solve each factor: x + 2 = 0 or x + 3 = 0 x = -2 or x = -3The solution of $x^2 + 5x + 6 = 0$ is x = -3, -2

Completing The Square

 $\underbrace{e.g.1:}_{\text{Solve the equation } x^2 - 2x - 5 = 0.}_{\text{Solution }:}$ $x^2 - 2x - 5 = 0$ $(x^2 - 2x) - 5 = 0$ $\left[(x - 1)^2 - (-1)^2 \right] - 5 = 0$ $(x - 1)^2 - 1 - 5 = 0$ $(x - 1)^2 - 1 - 5 = 0$ $(x - 1)^2 - 6 = 0$ $(x - 1)^2 - 6 = 0$ $(x - 1)^2 = 6$ $x - 1 = \pm \sqrt{6}$ $x = 1 \pm \sqrt{6}$ x = 3.499 @ - 1.499 #

e.g.2:

Solve the equation $x^2 - 6x - 10 = 0$. Solution: $x^2 - 6x - 10 = 0$ $(x^2 - 6x) - 10 = 0$ $[(x-3)^2 - (-3)^2] - 10 = 0$ $(x-3)^2 - 9 - 10 = 0$ $(x-3)^2 - 9 - 10 = 0$

$$(x-3)^{2} = 19$$

$$(x-3)^{2} = 19$$

$$x-3 = \pm \sqrt{19}$$

$$x = 3 \pm \sqrt{19}$$

$$x = 7.359 @-1.359 #$$

www.youtube.com/megalecture Page 2 of 9

Quadratic Formula

www.youtube.com/megalecture Page 3 of 9

Forming Quadratic Equation from Its Roots

Topic 2,3 Quadratic Equations & Functions::::::::: v 2.2 Form A Quadratic Equation, Solving Problem, & Using the Formula [SOR & POR]:::: v 2.21 Given Roots

e.g.1: Form a quadratic equation whose roots are 1 and 2.

Solution: $\begin{array}{c|c} x=1 & x=2 \\ x-1=0 & x-2=0 \\ (x-1)(x-2)=0 \\ x^2-3x+2=0 \# \end{array}$ Attention: This question is using an inverse concept of factorisation. e.g.: $x^2-3x+2=0 \\ (x-2)(x-1)=0 \\ x=1@2#$

<u>*e.g.2*</u>: Form a quadratic equation whose roots are $\frac{1}{3}$ and $-\frac{1}{4}$.

Solution:

$$\begin{array}{c|c|c} x = \frac{1}{3} & x = -\frac{1}{4} \\ 3x = 1 & 4x = -1 \\ 3x - 1 = 0 & 4x + 1 = 0 \end{array}$$

(3x-1)(4x+1) = 0 $12x^2 - x - 1 = 0 \#$

e.g.3: Form a quadratic equation whose roots are 0 and -5.

Solution :

 $x = 0 \qquad x = -5$ x + 5 = 0 x(x+5) = 0 $x^{2} + 5x = 0 \#$

<u>e.g.4</u>: Form a quadratic equation whose roots are $\frac{2}{3}$ and -1.

Solution :

$$x = \frac{2}{3} \qquad x = -1$$

$$3x = 2 \qquad x + 1 = 0$$

$$3x - 2 = 0$$

$$(3x - 2)(x + 1) = 0$$

$$3x^{2} + x - 2 = 0 \#$$

e.g.2:

If α and β are the roots for the quadratic equation $x^2 + 3x + 5 = 0$, Form a quadratic equation that has the following roots:

www.youtube.com/megalecture Page 5 of 9

(b) New Roots: $\frac{1}{\alpha}, \frac{1}{\beta}$	(c) New Roots: $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$		
$\alpha + \beta = -2, \alpha \beta = -5$	$\alpha + \beta = -2, \alpha \beta = -5$		
Let the quadratic equation as $x^2 + Bx + C = 0$.	Let the quadratic equation as $x^2 + Bx + C = 0$.		
$SOR: \frac{1}{\alpha} + \frac{1}{\beta} = -\frac{B}{1}$ $POR: \frac{1}{\alpha} \times \frac{1}{\beta} = \frac{C}{1}$	$SOR: \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = -\frac{B}{1}$ $POR: \frac{\alpha}{\beta} \times \frac{\beta}{\alpha} = \frac{C}{1}$		
$\frac{\alpha + \beta}{\alpha \beta} = -B \qquad \qquad \frac{1}{\alpha \beta} = C$	$\frac{\alpha^2 + \beta^2}{\alpha\beta} = -B \qquad \qquad \frac{\alpha\beta}{\alpha\beta} = C$		
$\frac{\left(-2\right)}{\left(-5\right)} = -B \qquad \qquad \frac{1}{\left(-5\right)} = C$	$\frac{\left(\alpha+\beta\right)^2-2\alpha\beta}{\alpha\beta}=-B\qquad\qquad\qquad\frac{\left(-5\right)}{\left(-5\right)}=C$		
$-B = \frac{2}{5} \qquad \qquad C = -\frac{1}{5}$	$-B = \frac{(-2)^2 - 2(-5)}{(-5)}$ C = 1		
$B = -\frac{2}{5}$	$B = \frac{14}{5}$		
$x^2 - \frac{2}{5}x - \frac{1}{5} \stackrel{\text{Y}}{=} 0$	$x^{2} + \frac{14}{5}x + 1 = 0$		
$5x^2 - 2x - 1 = 0$	$5x^2 + 14x + 5 = 0$		
$\frac{\therefore \text{ I ne quadratic equation that has the roots}}{1 1}$	$\therefore \text{ The quadratic equation that has the roots } \frac{\alpha}{\beta}, \frac{\beta}{\alpha}$		
$\frac{\overline{\alpha}, \overline{\beta}^{15, 5\lambda} - 2\lambda - 1 - 6\pi}{2}$	$\underline{is \ 5x^2 + 14x + 5} = 0 \#$		

Trick Questions

1. If α and β are the roots for the quadratic equation $x^2 - 2x - 3 = 0$, Form a quadratic equation that has the roots $\frac{\alpha}{\beta^2}$ and $\frac{\beta}{\alpha^2}(\alpha > \beta)$. ****** $(\alpha > \beta) \rightarrow$ can calculate the α and β . Solution: $x^2 - 2x - 3 = 0$ (x - 3)(x + 1) = 0 x = -1@3Given that $\alpha > \beta, \therefore \alpha = 3, \beta = -1$ $x = \frac{\alpha}{\beta^2}$ $x = \frac{\beta}{\alpha^2}$ $x = \frac{\beta}{\alpha^2}$ $x = \frac{\beta}{\alpha^2}$ $x = \frac{\beta}{\alpha^2}$ $x = \frac{-1}{9}$ x - 3 = 0 9x = -1 9x + 1 = 0 (x - 3)(9x + 1) = 0 $\therefore x^2 - 26x - 3 = 0 \#$

www.youtube.com/megalecture Page 6 of 9

2. If α and β are the roots for the quadratic equation $x^2 - x - 6 = 0$, Form a quadratic equation

www.youtube.com/megalecture Page 7 of 9

4. If one of the roots for the quadratic equation $x^2 - ax + b = 0$ is twice the other root. Prove that $9b = 2a^2$. Solution:

Nature of Roots of a Quadratic Equation

The expression $b^2 - 4ac$ in the general formula is called the *discriminant* of the equation, as it determines the type of roots that the equation has.

 $b^2 - 4ac > 0 \Leftrightarrow$ two real and distinct roots $b^2 - 4ac = 0 \Leftrightarrow$ two real and equal roots $b^2 - 4ac < 0 \Leftrightarrow$ no real roots $b^2 - 4ac \ge 0 \Leftrightarrow$ the roots are real

<u>e.g. 1:</u>

Find the range of values of k for which the equation $2x^2 + 5x + 3 - k = 0$ has two real distinct roots. <u>e.g. 3:</u>

Find the range of values of p for which the equation $x^2 - 2px + p^2 + 5p - 6 = 0$ has no real roots.

$$b^{2} - 4ac > 0$$

$$(5)^{2} - 4(2)(3 - k) > 0$$

$$25 - 24 + 8k > 0$$

$$1 + 8k > 0$$

$$8k > -1$$

$$k > \frac{-1}{8}$$

 $k = \pm \sqrt{144}$

 $k = \pm 12$

The roots of $3x^2 + kx + 12 = 0$ are equal. Find *k*. $b^2 - 4ac = 0$ $(k)^2 - 4(3)(12) = 0$ $k^2 - 144 = 0$ $k^2 = 144$

$$b^{2} - 4ac < 0$$

$$(-2p)^{2} - 4(1)(p^{2} + 5p - 6) < 0$$

$$4p^{2} - 4p^{2} - 20p + 24 < 0$$

$$-20p + 24 < 0$$

$$-20p < -24$$

$$20p > 24$$

$$p > \frac{24}{20}$$

$$p > \frac{6}{5}$$

www.youtube.com/megalecture Page 8 of 9

<u>e.g. 4:</u>

Show that the equation $a^2x^2 + 3ax + 2 = 0$ always has real roots.

$$b^{2} - 4ac$$

= (3a)² - 4(a²)(2)
= 9a² - 8a²

$$=a^2$$

 $a^2 > 0$ for all values of a. Therefore $b^2 - 4ac > 0$

Proven that

www.megalecture.com $a^2x^2 + 3ax + 2 = 0$ always has real roots.

www.youtube.com/megalecture Page 9 of 9