APPENDIX: PARTIAL FRACTIONS

Given the expression $\frac{1}{x-2}-\frac{1}{x+4}$ and asked to find its integral, you can use work from Section 14.4 to give

$$
\begin{aligned}
\int\left(\frac{1}{x-2}-\frac{1}{x+4}\right) d x & =\ln (x-2)-\ln (x+4)+c \\
& =\ln \left(k \frac{(x-2)}{x+4}\right) \quad(c=\ln k)
\end{aligned}
$$

If the same problem had been presented as

$$
\int \frac{6}{x^{2}+2 x-8} d x
$$

this may have caused some difficulty.
However, since $\frac{6}{x^{2}+2 x-8} \equiv \frac{1}{x-2}-\frac{1}{x+4}$ you can 'solve' the problem. Writing

$$
\frac{6}{x^{2}+2 x-8} \equiv \frac{1}{x-2}-\frac{1}{x+4}
$$

means that you have expressed $\frac{6}{x^{2}+2 x-8}$ in partial fractions.
Expressing a function of the form $\frac{1}{g(x)}$ when $g(x)$ is a
polynomial in x in terms of its partial fraction is a very useful
method which enables you to evaluate $\int \frac{1}{g(x)} d x$. So firstly you need to find out how to find partial fractions. The approach is illustrated in the following example.

Example

Writing

$$
\frac{x-1}{(3 x-5)(x-3)}=\frac{A}{(3 x-5)}+\frac{B}{(x-3)}
$$

find the values of A and B.

Solution

If the previous equation is true, then multiplying both sides by the denominator gives

$$
x-1=A(x-3)+B(3 x-5)
$$

This must hold for any value of x. So, for example, if $x=3$, then

$$
\begin{aligned}
& (3-1)=A(3-3)+B(9-5) \\
\Rightarrow & 2=4 B \\
\Rightarrow & B=\frac{1}{2}
\end{aligned}
$$

Similarly, $x=\frac{5}{3}$ gives

$$
\begin{aligned}
& \frac{5}{3}-1=A\left(\frac{5}{3}-3\right)+B(5-5) \\
\Rightarrow & \frac{2}{3}=-\frac{4}{3} A \\
\Rightarrow & A=-\frac{1}{2}
\end{aligned}
$$

So $\quad \frac{x-1}{(3 x-5)(x-3)}=\frac{-\frac{1}{2}}{(3 x-5)}+\frac{\frac{1}{2}}{(x-3)}$
You can check this by putting the R.H.S. over a common denominator:

$$
\begin{aligned}
\text { R.H.S. } & =\frac{-\frac{1}{2}(x-3)+\frac{1}{2}(3 x-5)}{(3 x-5)(x-3)} \\
& =\frac{-\frac{1}{2} x+\frac{3}{2}+\frac{3}{2} x-\frac{5}{2}}{(3 x-5)(x-3)} \\
& =\frac{x-1}{(3 x-5)(x-3)}
\end{aligned}
$$

Also note that an alternative to substituting values in the identity

$$
x-1=A(x-3)+B(3 x-5)
$$

is to compare coefficients. So for ' x ' terms,

$$
[x] \quad 1=A+3 B
$$

and for the constant term

$$
\text { [ct] }-1=-3 A-5 B
$$

These two equations can be solved for A and B.

Check that $a=-\frac{1}{2}, B=\frac{1}{2}$ satisfies both equations.

Activity 1

(a) By writing $\frac{1}{(x+4)(x-5)}$ as $\frac{A}{x+4}+\frac{B}{x-5}$ show that

$$
1=A(x-5)+B(x+4)
$$

and hence find the values of A and B.
(b) By writing $\frac{2 x+1}{(x-4)(x+1)}$ as $\frac{A}{x-4}+\frac{B}{x+1}$ find the values of A and B and hence express $\frac{2 x+1}{(x-4)(x+1)}$ in partial fractions.
(c) Express $\frac{11 x+12}{(2 x+3)(x+2)(x-3)}$ in partial fractions of the form

$$
\frac{A}{2 x+3}+\frac{B}{x+2}+\frac{C}{x-3} .
$$

A quadratic expression in the denominator cannot always be expressed in terms of linear factors, for example $\frac{1}{x^{2}+1}$ or $\frac{2 x+1}{x^{2}+3}$. Now $\frac{2 x+1}{x^{2}+3}$ could be written as $\frac{2 x}{x^{2}+3}+\frac{1}{x^{2}+3}$; this would suggest that when writing an expression where one of the factors is quadratic, there may be two unknowns to find.

For example, $\frac{2 x+1}{(x-3)\left(x^{2}+3\right)}$ could be written as

$$
\frac{A}{x-3}+\frac{B x}{x^{2}+3}+\frac{C}{x^{2}+3}=\frac{A}{x-3}+\frac{B x+C}{x^{2}+3}
$$

and multiplying both sides by $(x-3)\left(x^{2}+3\right)$
gives $\quad 2 x+1=A\left(x^{2}+3\right)+(B x+C)(x-3)$
or

$$
2 x+1=x^{2}(A+B)+x(C-3 B)+3(A-C) .
$$

Activity 2

Find the values of A, B and C for the expression above.

Activity 3

Express in terms of partial fractions

$$
\frac{6 x^{2}-13}{(x-1)(x-2)\left(x^{2}+x+5\right)}
$$

You should note the result that

$$
\int \frac{2 x}{x^{2}+a^{2}} d x=\ln \left(x^{2}+a^{2}\right)+c
$$

as this will be very useful in integrating partial fractions.

Activity 4

Verify the result above by differentiating the R.H.S. and showing that it is equal to the integral.

Example

Find $\quad \int \frac{(3-x)}{(x+1)\left(x^{2}+3\right)} d x$

Solution

You must first find the partial fractions by writing

$$
\frac{(3-x)}{(x+1)\left(x^{2}+3\right)}=\frac{A}{(x+1)}+\frac{B x+C}{\left(x^{2}+3\right)}
$$

This gives

$$
3-x=A\left(x^{2}+3\right)+(B x+C)(x+1)
$$

Substituting

$$
\begin{array}{lllll}
x=-1 & \Rightarrow & 4=4 A & \Rightarrow & A=1 \\
{\left[x^{2}\right]} & \Rightarrow & 0=A+B & \Rightarrow & B=-1 \\
{[\mathrm{ct}]} & \Rightarrow & 3=3 A+C & \Rightarrow & C=0
\end{array}
$$

Hence

$$
\begin{aligned}
\int \frac{(3-x)}{(x+1)\left(x^{2}+3\right)} d x & =\int \frac{1}{(x+1)}-\frac{x}{\left(x^{2}+3\right)} d x \\
& =\ln (x+1)-\frac{1}{2} \ln \left(x^{2}+3\right)+C
\end{aligned}
$$

Activity 5

Find $\quad \int \frac{(4+3 x)}{(x-3)\left(x^{2}+4\right)} d x$

One further case arises when a quadratic expression in the denominator does not factorise. You can regard this case as optional.

A further complication arises when there is a repeated factor. For example,

$$
\frac{1}{(x+2)(x-1)^{2}}
$$

What form will the partial fraction take?
Here you can write

$$
\frac{1}{(x+2)(x-1)^{2}}=\frac{A}{(x+2)}+\frac{B}{(x-1)}+\frac{C}{(x-1)^{2}}
$$

For multiplying throughout by $(x+2)(x-1)^{2}$ gives

$$
1=A(x-1)^{2}+B(x+2)(x-1)+C(x+2)
$$

and, for

$$
\begin{aligned}
& x=1 \Rightarrow 1=C .3 \Rightarrow C=\frac{1}{3} \\
& x=-2 \Rightarrow 1=A(-3)^{2} \Rightarrow A=\frac{1}{9} \\
& {\left[x^{2}\right]} \\
& 0=A+B \Rightarrow B=-\frac{1}{9}
\end{aligned}
$$

So $\quad \frac{1}{(x+2)(x-1)^{2}}=\frac{\frac{1}{9}}{(x+2)}-\frac{\frac{1}{9}}{(x-1)}+\frac{\frac{1}{3}}{(x-1)^{2}}$

Example

Integrate $\frac{1}{(x+2)(x-1)^{2}}$

Online Classes : Megalecture@gmail.com www.youtube.com/megalecture

Solution

You have already seen that

$$
\frac{1}{(x+2)(x-1)^{2}}=\frac{\frac{1}{9}}{(x+2)}-\frac{\frac{1}{9}}{(x-1)}+\frac{\frac{1}{3}}{(x-1)^{2}}
$$

So that

$$
\begin{aligned}
\int \frac{1}{(x+2)(x-1)^{2}} d x & =\int \frac{\frac{1}{9}}{(x+2)} d x-\int \frac{\frac{1}{9}}{(x-1)} d x+\int \frac{\frac{1}{3}}{(x-1)^{2}} d x \\
& =\frac{1}{9} \ln (x+2)-\frac{1}{9} \ln (x-1)-\frac{1}{3} \cdot \frac{1}{x-1}+k \\
& =\frac{1}{9} \ln \left(\frac{x+2}{x-1}\right)-\frac{1}{3(x-1)}+k
\end{aligned}
$$

$$
\text { (since } \ln A-\ln B=\ln \left(\frac{A}{b}\right) \text {) }
$$

The method can be further extended to factors of higher degree than 2. So, for example, suppose

$$
f(x)=\frac{1}{(x-1)^{2}(x+2)^{2}}
$$

What form will the partial fraction take?
In all the examples so far considered of the form

$$
\frac{f(x)}{g(x)}
$$

when f and g are both polynomials in x, it has always been the case that the degree of f is less than the degree of g. So if g is a quadratic function, the methods so far can deal with the case where f is of the form

$$
f(x)=a+b x \quad(a, b \text { constants })
$$

But suppose f is also a quadratic function.
What happens when both f and g are quadratic expressions?
The method will be illustrated with an example.

Example

Express $\frac{x^{2}+5}{x^{2}-5 x+6}$ in terms of its partial fraction.

Hence find the value of

$$
\int_{4}^{5} \frac{x^{2}+5}{x^{2}-5 x+6} d x
$$

Solution

You can write

$$
\begin{aligned}
\frac{x^{2}+5}{x^{2}-5 x+6} & =\frac{x^{2}+5}{(x-3)(x-2)} \\
& =A+\frac{B}{(x-3)}+\frac{C}{(x-2)}
\end{aligned}
$$

Multiplying throughout by $(x-3)(x-2)$ gives

$$
x^{2}+5=A(x-3)(x-2)+B(x-2)+C(x-3)
$$

and

$$
\begin{array}{lcll}
x=2 & \Rightarrow & 9=C(-1) & \Rightarrow \\
\\
x=3 & \Rightarrow 14=-9 \\
{\left[x^{2}\right]} & & \Rightarrow & B=A \\
& \Rightarrow & A=1
\end{array}
$$

Hence

$$
\frac{x^{2}+5}{x^{2}-5 x+6}=1+\frac{14}{x-3}-\frac{9}{x-2}
$$

and

$$
\begin{aligned}
\int_{4}^{5} \frac{x^{2}+5}{x^{2}-5 x+6} d x & =\int_{4}^{5} 1 d x+14 \int_{4}^{5} \frac{1}{x-3} d x-9 \int_{4}^{5} \frac{1}{x-2} d x \\
& =[x]_{4}^{5}+14[\ln (x-3)]_{4}^{5}-9[\ln (x-2)]_{4}^{5} \\
& =(5-4)+14(\ln 2-\ln 1)-9(\ln 3-\ln 2) \\
& =1+23 \ln 2-9 \ln 3
\end{aligned}
$$

Activity 6

Express $\frac{x^{2}+x+1}{\left(x^{2}-1\right)}$ in partial fractions and hence find

$$
\int \frac{x^{2}+x+1}{\left(x^{2}-1\right)} d x
$$

Returning to the general case of $\frac{f(x)}{g(x)}$, consider now what happens if the degree of $f(x)$ is greater than that of $g(x)$. For example,

$$
\frac{x^{3}+x^{2}-1}{\left(x^{2}-4\right)}
$$

What form will the partial fractions take for the above function?

Activity 7

Find $\int \frac{x^{3}+x^{2}-1}{\left(x^{2}-4\right)} d x$

Finally in this section it should also be noted that expressing in terms of partial fractions can be helpful in differentiation as well as integration.

Activity 8

By putting $y=\frac{x+1}{(x-2)(x+5)}$ into partial fractions, obtain
(a) $\frac{d y}{d x}$
(b) $\frac{d^{2} y}{d x^{2}}$
(c) $\frac{d^{n} y}{d x^{n}}$

Exercise

1. Express in partial fractions
(a) $\frac{x}{(2-x)(1+x)}$
(b) $\frac{3 x-1}{(3 x+1)(x-2)}$
(c) $\frac{2 x}{x^{2}+2 x-3}$
(d) $\frac{3}{(x-2)^{2}(x+2)}$
(e) $\frac{2 x^{2}-3}{x\left(x^{2}+2\right)}$
(f) $\frac{x^{2}+2 x}{x^{2}-9}$
(g) $\frac{1}{(x-1)^{2}(x+1)}$
(h) $\frac{3 x}{(x+3)\left(x^{2}+1\right)}$
2. Evaluate $\int_{3}^{4} \frac{2 x-1}{(x-2)(5-x)} d x$
3. Evaluate $\int_{0}^{\frac{3}{4}} \frac{1-x}{(x+1)\left(x^{2}+1\right)} d x$
4. Find $\int \frac{2 x^{2}+2 x+3}{(x+2)\left(x^{2}+3\right)} d x$
5. Find $\int \frac{x^{3}+2 x^{2}-10 x-9}{(x-3)(x+3)} d x$
