Physics Equation List: Form 4Introduction to Physics

Relative Deviation

Relative Deviation = $\frac{\text{Mean Deviation}}{\text{Mean Value}} \times 100\%$

Prefixes

Prefixes	Value		Standard form	Symbol
Tera	1 000 000 000 000		10^{12}	T
Giga	1 000 000 000		10^{9}	G
Mega	1 000 000		10^{6}	M
Kilo	1 000		10^{3}	k
deci	0.1		10-1	d
centi	0.01		10^{-2}	c
milli	0.001		C10 ⁻³	m
micro	0.000 001		10^{-6}	μ
nano	0.000 000 001	./^	10-9	n
pico	0.000 000 000 001	7,0	10^{-12}	p

Units for Area and Volume

$$1 \text{ m} = 10^{2} \text{ cm}
1 \text{ m}^{2} = 10^{4} \text{ cm}^{2}
1 \text{ m}^{3} = 10^{6} \text{ cm}^{3}$$

$$1 \text{ cm}^{2} = 10^{-2} \text{ m}$$

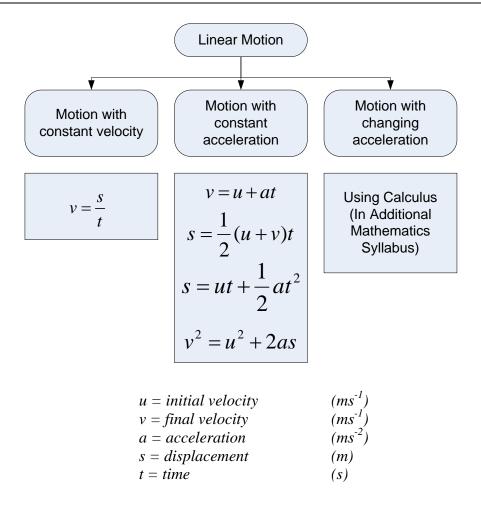
$$1 \text{ cm}^{2} = 10^{-2} \text{ m}$$

$$1 \text{ cm}^{2} = 10^{-4} \text{ m}^{2}$$

$$1 \text{ cm}^{3} = 10^{-6} \text{ m}^{3}$$

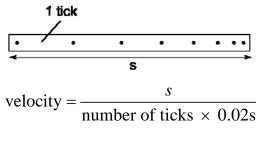
Force and Motion

Average Speed

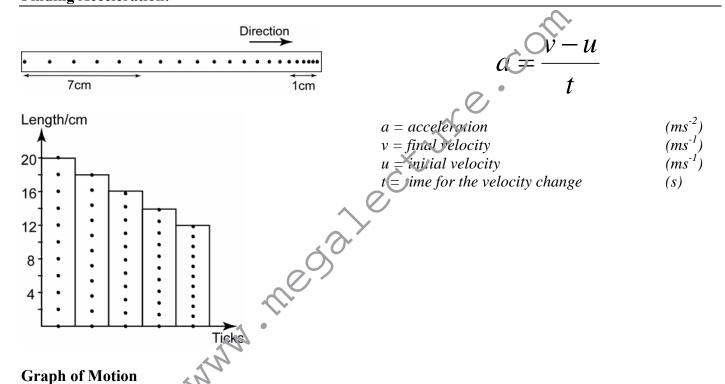

Average Speed =
$$\frac{\text{Total Distance}}{\text{Total Time}}$$

Velocity

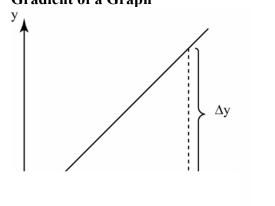
$$V = \frac{S}{t}$$
 $v = velocity \qquad (ms^{-1})$
 $s = displacement \qquad (m)$
 $t = time \qquad (s)$


Acceleration

Equation of Linear Motion


Ticker Tape

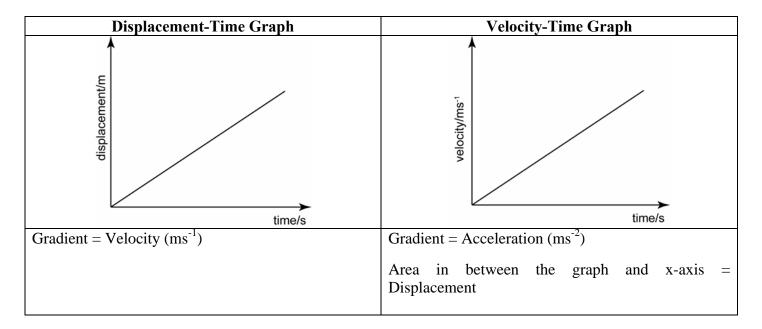
Finding Velocity:



$$1 \text{ tick} = 0.02 \text{s}$$

Finding Acceleration:

Gradient of a Graph



The gradient 'm' of a line segment between two points and is defined as follows:

Gradient,
$$m = \frac{\text{Change in y coordinate, } \Delta y}{\text{Change in x coordinate, } \Delta x}$$

$$or$$

$$m = \frac{\Delta y}{\Delta x}$$

Momentum

$$p = m \times v$$
 $p = momentum (kg ms-1) $m = mass (kg)$
 $v = velocity (ms-1)$$

Principle of Conservation of Momentum

$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$

$m_1 = mass \ of \ object \ 1$	(kg)
$m_2 = mass \ of \ object \ 2$	(kg)
u_1 = initial velocity of object 1	(ms^{-1})
u_2 = initial velocity of object 2	(ms^{-1})
v_1 = final velocity of object 1	(ms^{-1})
$v_2 = final\ velocity\ of\ object\ 2$	(ms^{-1})

Newton's Law of Motion Newton's First Law

In the absence of external forces, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a straight line).

Page 4 of 17

Newton's Second Law

$$F\alpha \frac{mv - mu}{t}$$

$$F = ma$$

The rate of change of momentum of a body is directly proportional to the resultant force acting on the body and is in the same direction.

$$F = Net Force$$
 $(N or kgms^{-2})$
 $m = mass$ (kg)
 $a = acceleration$ (ms^{-2})

Implication

When there is resultant force acting on an object, the object will **accelerate** (moving faster, moving slower or change direction).

Newton's Third Law

Newton's third law of motion states that for every force, there is a reaction force with the same magnitude but in the opposite direction.

Impulse

Impulse =
$$Ft$$

$$F = force$$
 (N)
 $t = time$ (s)

$$Impulse = mv - mu$$

$$m = mass$$
 (kg)
 $v = final velocity$ (ms⁻¹)
 $u = initial velocity$ (ms⁻¹)

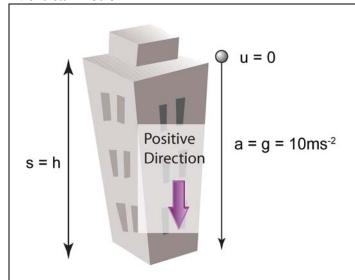
Impulsive Force

$$F = \frac{mv - mu}{t}$$

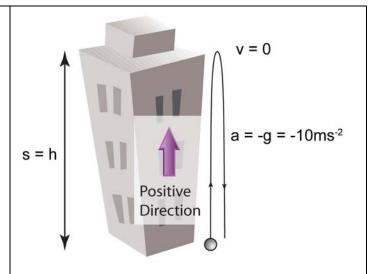
$$F = Force$$
 $(N \text{ or } kgms^{-2})$
 $t = time$ (s)
 $m = mass$ (kg)
 $v = final \text{ velocity}$ (ms^{-1})
 $u = initial \text{ velocity}$ (ms^{-1})

Gravitational Field Strength

$$g = \frac{F}{m}$$


$$g = gravitational field strength$$

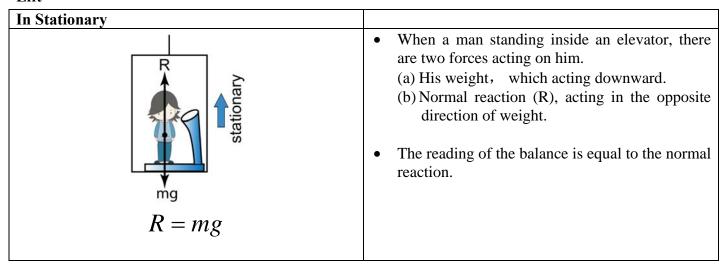
 $F = gravitational force$
 $m = mass$

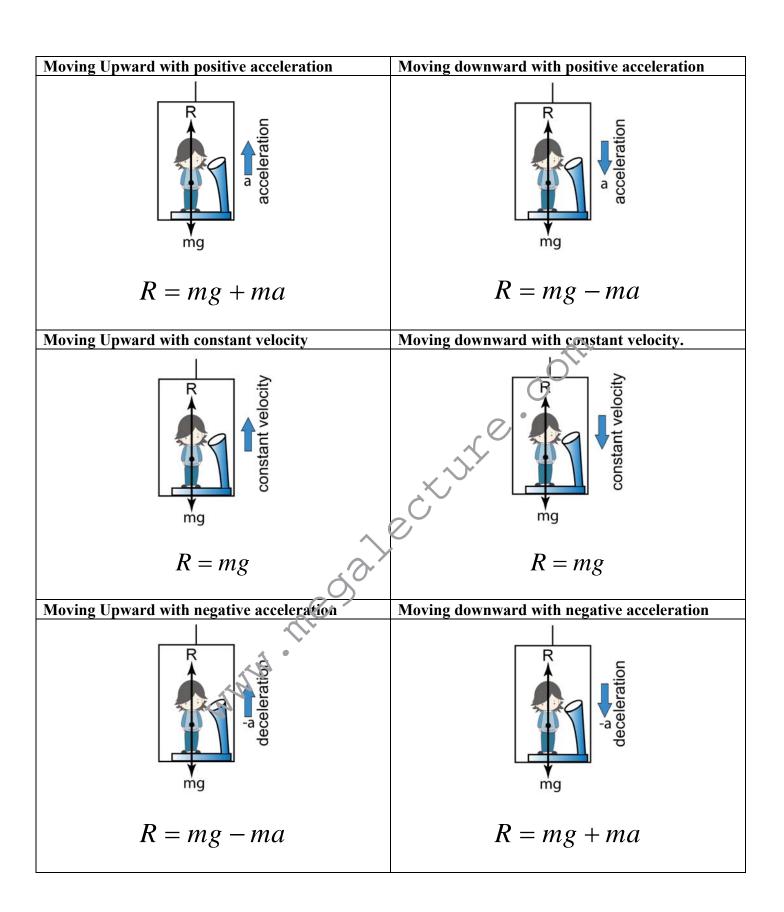

$$(N kg^{-1})$$

 $(N or kgms^{-2})$
 (kg)

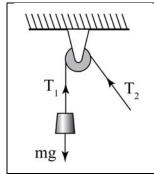
Weight

$$W = Weight$$
 $(N \text{ or } kgms^{-2})$
 $m = mass$ (kg)
 $g = gravitational \text{ field strength/gravitational acceleration}$ (ms^{-2})


Vertical Motion



- If an object is release from a high position:
- The initial velocity, u = 0.
- The acceleration of the object = gravitational acceleration = 10ms⁻²(or 9.81 ms⁻²).
- The displacement of the object when it reach the ground = the height of the original position, h.
- If an object is launched vertically upward:
- The velocity at the maximum height, v = 0.
- The deceleration of the object = -gravitational acceleration = -10ms⁻²(or -9.81 ms⁻²).
- The displacement of the object when it reach the ground = the height of the original position, h.

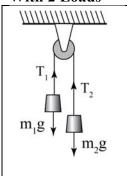

Lift

Smooth Pulley

With 1 Load

Moving with uniform speed:

$$T_1 = mg$$


Stationary:

 $T_1 = mg$

Accelerating:

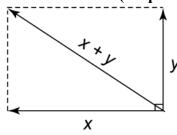
$$T_1 - mg = ma$$

With 2 Loads

Finding Acceleration:

(If $m_2 > m_1$)

$$m_2g - m_1g = (m_1 + m_2)a$$


Finding Tension:

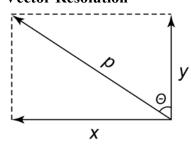
 $(If m_2 > m_1)$

$$T_1 = T_2$$

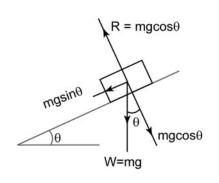
$$T_1 - m_1 g = ma$$

$$m_2 g - T_2 = ma$$

Vector


Vector Addition (Perpendicular Vector)

Magnitude =
$$\sqrt{x^2 + y^2}$$

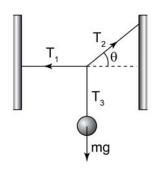

Direction =
$$tan^{-1} \frac{|y|}{|x|}$$

Vector Resolution

$$|x| = |p| \sin \theta$$

 $|y| = |p| \cos \theta$

Inclined Plane

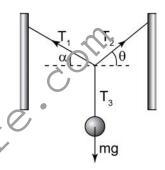

Component parallel to the plane

 $= mgsin \theta$

Component perpendicular to the plane

 $= mgcos\theta$

Forces In Equilibrium

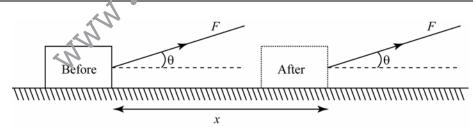


$$T_3 = mg$$

$$T_2 \sin \theta = mg$$

$$T_2 \cos \theta = T_1$$

$$T_1 \tan \theta = mg$$



$$T_3 = mg$$

$$T_2\cos\theta = T_1\cos\alpha$$

$$T_2 \sin \theta + T_1 \sin \alpha = mg$$

Work Done

$$W = Fx \cos \theta$$

W = Work Done

(J or Nm)

F = Force

 $(N or kgms^{-2})$

x = displacement

 θ = angle between the force and the direction of motion

When the force and motion are in the same direction.

Work Done **Force**

(J or Nm)(N or kgms⁻²)

lisplacement

(*m*)

 $\binom{o}{}$

Energy

Kinetic Energy

$$E_K = \frac{1}{2}mv^2 \qquad E_K = Kinetic \ Energy \qquad (J)$$

$$m = mass \qquad (kg)$$

$$v = velocity \qquad (ms^{-1})$$

Gravitational Potential Energy

$$E_P = mgh$$
 $E_P = Potential\ Energy$ (J) $m = mass$ (kg) $g = gravitational\ acceleration$ (ms^{-2}) $h = height$ (m)

Elastic Potential Energy

$$E_{P} = \frac{1}{2}kx^{2}$$
 $E_{P} = Potential\ Energy$ (J)
 $k = spring\ constant$ $(N\ m^{-1})$
 $x = extension\ of\ spring$ (m)
 $E_{P} = \frac{1}{2}Fx$ $F = Force$ (N)

Power and Efficiency

Power

$$P = \frac{W}{t}$$
 $P = power$ $(W \text{ or } Js^{-1})$
 $W = work \text{ done}$ $(J \text{ or } Nm)$
 $E = energy \text{ change}$ $(J \text{ or } Nm)$
 $t = time$ (s)

Efficiency

$$Efficiency = \frac{Useful Energy}{Energy} \times 100\%$$

Or

$$Efficiency = \frac{Power Output}{Power Input} \times 100\%$$

Hooke's Law

$$F = kx$$

$$F = Force (N \text{ or } kgms^{-2})$$

$$k = spring \text{ constant} (N \text{ m}^{-1})$$

$$extension \text{ or compression of spring} (m)$$

Force and Pressure

Density

$$\rho = \frac{m}{V}$$

$$\rho = density \qquad (kg m^{-3})$$
 $m = mass \qquad (kg)$
 $V = volume \qquad (m^3)$

Pressure

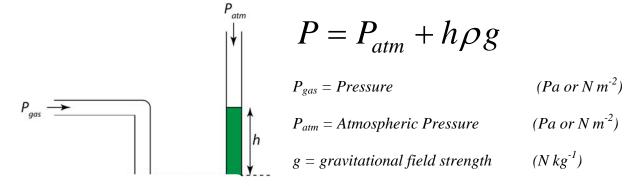
$$P = \frac{F}{A}$$

$$P = Pressure$$

$$A = Area of the surface$$

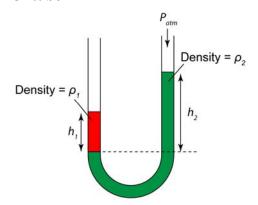
$$F = Force acting normally to the surface (N or kgms-2)$$

Liquid Pressure

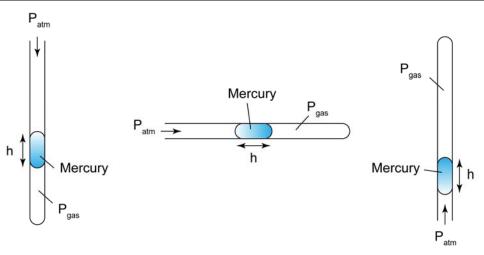

$$P = h \rho g$$
 $h = depth$ (m) $\rho = density$ $(kg m^{-3})$ $g = gravitational Field Strength $(N kg^{-1})$$

Pressure in Liquid

$$P = P_{atm} + h \rho g$$
 $h = depth$ (m) $\rho = density$ $(kg m^{-3})$ $g = gravitational Field Strength$ $(N kg^{-1})$ $P_{atn} = atmospheric Pressure$ $(Pa or N m^{-2})$


Gas Pressure

Manometer


Page 11 of 17

U=tube

$$h_1 \rho_1 = h_2 \rho_2$$

Pressure in a Capillary Tube

 $P_{gas} = P_{atm} + h\rho g$

 $P_{gas} = P_{atm}$

 $P_{gas} = P_{atm} - h\rho g$

 $P_{gas} = gas pressure in the capillary tube$

 $P_{atm} = atmospheric pressure$

h = length of the captured mercury

 ρ = density of mercury

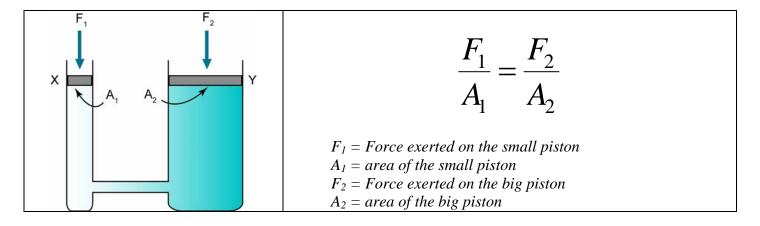
g = gravitational field strength

 $(Pa \ or \ N \ m^{-2})$

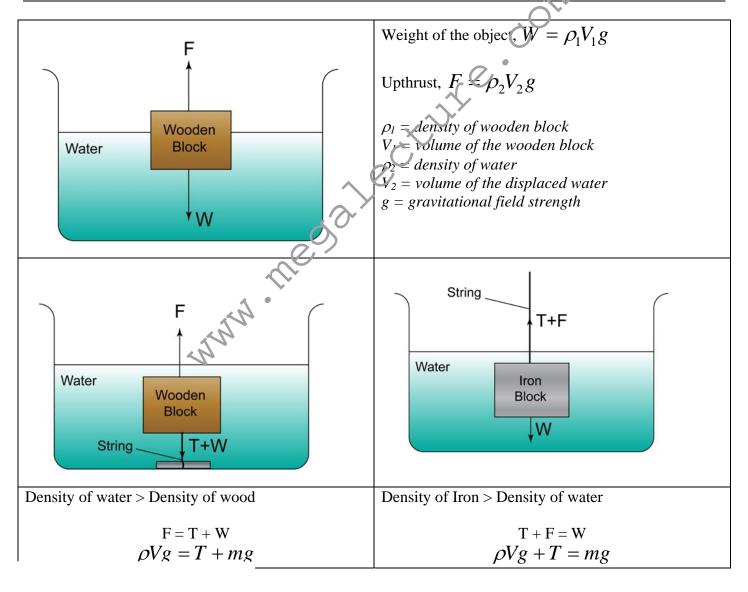
 $(Pa \ or \ N \ m^{-2})$

(*m*)

 $(kg m^{-3})$ $(N kg^{-1})$


Barometer

P _a	Pressure in unit cmHg	Pressure in unit Pa
26cm	$P_a = 0$	$P_a = 0$
P _e P _c	$P_b = 26$	$P_b = 0.26 \times 13600 \times 10$
	$P_c = 76$	$P_c = 0.76 \times 13600 \times 10$
	$P_d = 76$	$P_d = 0.76 \times 13600 \times 10$
	D - 76	$P_e = 0.76 \times 13600 \times 10$
	84	$P_{\rm f} = 0.84 \times 13600 \times 10$


(Density of mercury = 13600kgm^{-3})

Page 12 of 17

Pascal's Principle

Archimedes Principle

Heat

Heat Change

$$Q = mc\theta$$

m = mass (kg) c = specific heat capacity $(J kg^{-1} {}^{o}C^{-1})$ $\theta = temperature change$ $({}^{o})$

Electric Heater	Mixing 2 Liquid	
Energy Supply, $E=Pt$ Energy Receive, $Q=mc\theta$	Heat Gain by Liquid 1 = Heat Loss by Liquid 2 $m_1c_1\theta_1=m_2c_2\theta_2$	
Energy Supply, E = Energy Receive, Q	$m_1 = mass \ of \ liquid \ 1$	
$Pt = mc\theta$	c_1 = specific heat capacity of liquid 1 θ_l = temperature change of liquid 1	
$E = electrical\ Energy\ (J\ or\ Nm)$ $P = Power\ of\ the\ electric\ heater\ (W)$ $t = time\ (in\ second)$ (s)	$m_2 = mass \ of \ liquid \ 2$ $c_2 = specific \ heat \ capacity \ of \ liquid \ 2$ $\theta_2 = temperature \ change \ of \ liquid \ 2$	
$Q = Heat\ Change\ (J\ or\ Nm)$ $m = mass\ (kg)$ $c = specific\ heat\ capacity\ (J\ kg^{-1}\ {}^{o}C^{-1})$ $\theta = temperature\ change\ ({}^{o})$		

Specific Latent Heat

$$Q = mL$$

 $Q = Heat \ Change \qquad (J \ or \ Nm)$ $m = mass \qquad (kg)$ $L = specific \ latent \ heat \qquad (J \ kg^{-l})$

Boyle's Law

$$P_1V_1 = P_2V_2$$

(Requirement: Temperature in constant)

Pressure Law

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Charles's Law

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

(Requirement: Pressure is constant)

Universal Gas Law

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$P = Pressure$$

$$V = Volume$$

$$T = Temperature$$

$$(Pa \ or \ cmHg \)$$

$$(m^3 \ or \ cm^3)$$

$$(MUST \ be \ in \ K(Kelvin))$$

Light

Refractive Index

Snell's Law

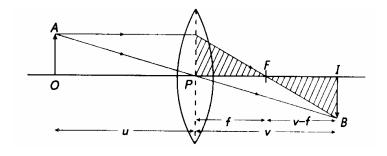
Real depth/Apparent Depth sin i n = refractive index(No unit) i = angle of incident $\binom{o}{}$ r = angle of reflectionair water n = refractive index(No unit) apparent D = real depth(*m or cm*...) d = apparent depth(*m or cm*...) image of point point **Total Internal Reflection** Speed of light $n = \frac{c}{}$ n = refractive index(No unit) n = refractive index(No unit) $c = critical \ angle$ (ms^{-1}) c = speed of light in vacuumv = speed of light in a medium (like water,

Lens

Power

$$P = \frac{1}{f}$$

$$P = Power \qquad (D(Diopter))$$


$$f = focal \ length \qquad (m)$$

Linear Magnification

$$m = \frac{h_i}{h_o} \qquad m = \frac{v}{u} \qquad \frac{h_i}{h_o} = \frac{v}{u}$$

m = linear magnification (No unit) u = distance of object (m or cm...) v = distance of image (m or cm...) $h_i = heigth of image$ (m or cm...) $h_o = heigth of object$ (m or cm...)

Lens Equation

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

Conventional symbol

	positive negative		
и	Real object	Virtual object	
v	Real image	Virtual image	
f	Convex lens	Concave lens	

Astronomical Telescope

Magnification,

$$m = \frac{P_e}{P_o} \qquad m = \frac{f_o}{f_e}$$

m = linear magnification

 $P_e = Power of the eyepiece$

 P_o = Power of the objective lens

 f_e = focal length of the eyepiece

 f_o = focal length of the objective lens

Distance between eye lens and objective lens

$$d = f_o + f_e$$

d = Distance between eye lens and objective lens

 f_e = focal length of the eyepiece

 $f_o = focal \ length \ of \ the \ objective \ lens$

Compound Microscope

Magnification

$$\begin{split} m &= m_1 \times m_2 \\ &= \frac{\text{Height of first image }, I_1}{\text{Height of object}} \times \frac{\text{Height of second image, } I_2}{\text{Height of first image }, I_1} \\ &= \frac{\text{Height of second image, } I_2}{\text{Height of object, } I_1} \end{split}$$

m = Magnification of the microscope

 m_1 = Linear magnification of the object lens

 m_2 = Linear magnification of the eyepiece

Distance in between the two lens

$$d > f_o + f_e$$

d = Distance between eye lens and objective lens

 f_e = focal length of the eyepiece

 f_o = focal length of the objective lens

