		Onlin	<u>ne (</u>	<u> Classes : Meg</u>	galect	ture@gmail.co	<u>m</u>	
0	∍, ov	ERALL CH	ΗE	MISTRY	CAI		ONS	5 WS 1
1	What is the tota	l number of atoms	s in 1	.80g of water (I	H ₂ O)?			
	Α	6.02×10^{22}	В	6.02×10^{23}	С	1.80×10^{23}	D	1.80×10^{24}
2	$88 \text{kg} \text{ of } \text{CO}_2 \text{cc}$	ontains						
	А	2.0 mol	В	2000 mol	С	0.50 mol	D	3872 mol
3	What is the sum of the coefficients when the following equation is balanced with the smallest possible whole numbers?					smallest possible		
	$CuFeS_2 + O_2 \rightarrow Cu_2S + SO_2 + FeO$							
	Α	7	В	8	С	11	D	12
4	Iron(III) oxide r Fe ₂ O ₃ +3CO	eacts with carbon $\rightarrow 2Fe + 3CO_2$	mon	oxide according	; to the	equation:		
	How many mole	es of iron are prod	uced	when 180 mol	of carb	on monoxide read	ct with	n excess iron(III) oxide?
	Α	120 mol	В	180 mol	С	270 mol	D	360 mol
5	Propene underg $2C_3H_6(g) + 90$	oes complete com $O_2(g) \rightarrow 6CO_2(g)$	busti +6F	ion to produce c H ₂ O(l)	carbon	dioxide and water		

What volume of CO_2 is produced when 360 cm^3 of propene reacts with 360 cm^3 of oxygen at 273 K and 1 atm pressure?

A 120 cm^3 **B** 240 cm^3 **C** 540 cm^3 **D** 1080 cm^3

6 What mass of $Na_2S_2O_3.5H_2O$ must be used to make up 200 cm^3 of a $0.100 \text{ mol dm}^{-3}$ solution?

A 3.16g **B** 4.96g **C** 24.8g **D** 31.6g

7 20.00 cm^3 of potassium hydroxide (KOH) is exactly neutralised by 26.80 cm^3 of $0.100 \text{ mol dm}^{-3}$ sulfuric acid (H₂SO₄). The concentration of the potassium hydroxide is:

A	$0.0670 \mathrm{mol}\mathrm{dm}^{-3}$	С	$0.268 \mathrm{mol}\mathrm{dm}^{-3}$
B	$0.134 \mathrm{mol}\mathrm{dm}^{-3}$	D	$1.34 \mathrm{mol}\mathrm{dm}^{-3}$

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com

Online Classes : Megalecture@gmail.com

8 Barium chloride solution reacts with sodium sulfate solution according to the equation

 $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$

When excess barium chloride solution is reacted with 25.00 cm^3 of sodium sulfate solution, $0.2334 \text{ g of } BaSO_4$ (molar mass 233.4 g mol^{-1}) is precipitated.

The concentration of sodium ions in the sodium sulfate solution was:

Α	$0.08000{ m moldm^{-3}}$	С	$0.001000\mathrm{moldm^{-3}}$
B	$0.04000\mathrm{mol}\mathrm{dm}^{-3}$	D	$0.002000\mathrm{moldm^{-3}}$

9 When potassium chlorate(V) (molar mass 122.6 g mol⁻¹) is heated, oxygen gas (molar mass 32.0 g mol⁻¹) is produced:

 $2\text{KClO}_3(s) \rightarrow 2\text{KCl}(s) + 3\text{O}_2(g)$

When 1.226 g of potassium chlorate(V) is heated, 0.320 g of oxygen gas is obtained. The percentage yield of oxygen is:

A 100% **B** 66.7% **C** 26.1% **D** 17.4%

10 Elemental analysis of a nitrogen oxide shows that it contains 2.8 g of nitrogen and 8.0 g of oxygen. The empirical formula of this oxide is:

A NO **B** NO₂ **C** N₂O₃ **D** N₂O₅

11 Nitrogen can be prepared in the laboratory by the following reaction:

 $2NH_3(g) + 3CuO(s) \rightarrow N_2(g) + 3H_2O(l) + 3Cu(s)$

If 224 cm³ of ammonia, when reacted with excess copper oxide, produces 84 cm³ of nitrogen, calculate the percentage yield of nitrogen. All gas volumes are measured at STP. [3]

12 Manganese may be extracted from its ore, hausmannite, by heating with aluminium.

 $3Mn_3O_4 + 8Al \rightarrow 4Al_2O_3 + 9Mn$

- a 100.0 kg of Mn₃O₄ is heated with 100.0 kg of aluminium. Work out the maximum mass of manganese that can be obtained from this reaction. [4]
- **b** 1.23 tonnes of ore are processed and 200.0 kg of manganese obtained. Calculate the percentage by mass of Mn_3O_4 in the ore. [3]
- **13** A hydrocarbon contains 88.8% C. 0.201 g of the hydrocarbon occupied a volume of 98.3 cm³ at 320 K and 1.00×10^5 Pa.
 - a Determine the empirical formula of the hydrocarbon. [3]b Determine the molecular formula of the hydrocarbon. [3]

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com

Online Classes : Megalecture@gmail.com

14	Limestone is impure calcium carbonate. A 1.20 g sample of limestone is added to excess dilute hydrochloric acid and the gas collected; 258 cm^3 of carbon dioxide was collected at a temperature of $27 ^\circ\text{C}$ and a pressure of $1.10 \times 10^5 \text{ Pa}$.					
	$CaCO_{3}(s) + 2HCl(aq) \rightarrow CaCl_{2}(aq) + CO_{2}(g) + H_{2}O(l)$					
	a Calculate the number of moles of gas collected.	[3]				
	b Calculate the percentage purity of the limestone (assume that none of the impurities in the limestone react with hydrochloric acid to produce gaseous products)	[3]				
15	25.0 cm^3 of $0.100 \text{ mol dm}^{-3}$ copper(II) nitrate solution is added to 15.0 cm^3 of $0.500 \text{ mol dm}^{-3}$ potassium iod: The ionic equation for the reaction that occurs is:	ide.				
	$2\mathrm{Cu}^{2+}(\mathrm{aq}) + 4\mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2\mathrm{CuI}(\mathrm{s}) + \mathrm{I}_{2}(\mathrm{aq})$					
	a Determine which reactant is present in excess.	[3]				
	b Determine the mass of iodine produced.	[3]				
16	0.0810 g of a group 2 metal iodide, MI ₂ , was dissolved in water and made up to a total volume of 25.00 cm ³ . Excess lead(II) nitrate solution (Pb(NO ₃) ₂ (aq)) was added to the MI ₂ solution to form a precipitate of lead(II) iodide (PbI ₂). The precipitate was dried and weighed and it was found that 0.1270 g of precipitate was obtained.					
	a Determine the number of moles of lead iodide formed.	[2]				
	b Write an equation for the reaction that occurs.	[1]				
	c Determine the number of moles of MI_2 that reacted.	[1]				
	d Determine the identity of the metal, M.	[3]				
17	0.4000 g of hydrated copper sulfate (CuSO ₄ . <i>x</i> H ₂ O) is dissolved in water and made up to a total volume of 100.0 cm^3 with distilled water. 10.00 cm^3 of this solution is reacted with excess barium chloride (BaCl ₂) solut The mass of barium sulfate formed was $3.739 \times 10^{-2} \text{ g}$.	ion.				
	Colorito the month of a flooring will be formed	[2]				

a	Calculate the number of moles of barium sulfate formed.	[2]
b	Write an equation for the reaction between copper sulfate solution and barium chloride solution.	[1]
c	Calculate the number of moles of copper sulfate that reacted with the barium chloride.	[1]
d	Calculate the number of moles of $CuSO_4$ in 0.4000 g of hydrated copper sulfate.	[1]
e	Determine the value of <i>x</i> .	[3]

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com