Online Classes : Megalecture@gmail.com

OVERALL CHEMISTRY CALCULATIONS WS 1

1 What is the total number of atoms in 1.80 g of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$?
A 6.02×10^{22}
B 6.02×10^{23}
(C) 1.80×10^{23}
D 1.80×10^{24}

288 kg of CO_{2} contains
A 2.0 mol
(B) 2000 mol
C $\quad 0.50 \mathrm{~mol}$
D 3872 mol

3 What is the sum of the coefficients when the following equation is balanced with the smallest possible whole numbers?
$2 \mathrm{CuFeS}_{2} \mathrm{HO}_{2} \rightarrow / \mathrm{Cu}_{2} \mathrm{~S}-3 \mathrm{SO}_{2} \not 2 \mathrm{FeO}$
A 7
B 8
C 11
(D) 12

4 Iron(III) oxide reacts with carbon monoxide according to the equation:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

How many moles of iron are produced when 180 mol of carbon monoxide react with excess iron(III) oxide?
(A) 120 mol
B 180 mol
C $\quad 270 \mathrm{~mol}$
D 360 mol

5 Propene undergoes complete combustion to produce carbon dioxide and water

$$
2 \mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

What volume of CO_{2} is produced when $360 \mathrm{~cm}^{3}$ of propene reacts with $360 \mathrm{~cm}^{3}$ of oxygen at 273 K and 1 atm pressure?
A $120 \mathrm{~cm}^{3}$
(B) $240 \mathrm{~cm}^{3}$
C $540 \mathrm{~cm}^{3}$
D $1080 \mathrm{~cm}^{3}$

6 What mass of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ must be used to make up $200 \mathrm{~cm}^{3}$ of a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution?
A 3.16 g
(B) 4.96 g
C 24.8 g
D 31.6 g
$720.00 \mathrm{~cm}^{3}$ of potassium hydroxide (KOH) is exactly neutralised by $26.80 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. The concentration of the potassium hydroxide is:
A $0.0670 \mathrm{~mol} \mathrm{dm}^{-3}$
(C)
$0.268 \mathrm{~mol} \mathrm{dm}^{-3}$
B $0.134 \mathrm{moldm}^{-3}$
D $1.34 \mathrm{moldm}^{-3}$

Online Classes : Megalecture@gmail.com

8 Barium chloride solution reacts with sodium sulfate solution according to the equation

$$
\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})
$$

When excess barium chloride solution is reacted with $25.00 \mathrm{~cm}^{3}$ of sodium sulfate solution, 0.2334 g of BaSO_{4} (molar mass $233.4 \mathrm{~g} \mathrm{~mol}^{-1}$) is precipitated.

The concentration of sodium ions in the sodium sulfate solution was:

- C $0.001000 \mathrm{~mol} \mathrm{dm}^{-3}$

D $0.002000 \mathrm{~mol} \mathrm{dm}^{-3}$

9 When potassium chlorate (V) (molar mass $122.6 \mathrm{~g} \mathrm{~mol}^{-1}$) is heated, oxygen gas (molar mass $32.0 \mathrm{~g} \mathrm{~mol}^{-1}$) is produced:

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

When 1.226 g of potassium chlorate (V) is heated, 0.320 g of oxygen gas is obtained. The percentage yield of oxygen is:
A 100%
(B) 66.7%
C 26.1%
D 17.4%

10 Elemental analysis of a nitrogen oxide shows that it contains 2.8 g of nitrogen and 8.0 g of oxygen. The empirical formula of this oxide is:
A NO
B NO_{2}
C $\quad \mathrm{N}_{2} \mathrm{O}_{3}$
(D) $\mathrm{N}_{2} \mathrm{O}_{5}$

11 Nitrogen can be prepared in the laboratory by the following reaction:

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CuO}(\mathrm{~s}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{Cu}(\mathrm{~s})
$$

If $224 \mathrm{~cm}^{3}$ of ammonia, when reacted with excess copper oxide, produces $84 \mathrm{~cm}^{3}$ of nitrogen, calculate the percentage yield of nitrogen. All gas volumes are measured at STP. 75%

12 Manganese may be extracted from its ore, hausmannite, by heating with aluminium.

$$
3 \mathrm{Mn}_{3} \mathrm{O}_{4}+8 \mathrm{Al} \rightarrow 4 \mathrm{Al}_{2} \mathrm{O}_{3}+9 \mathrm{Mn}
$$

a 100.0 kg of $\mathrm{Mn}_{3} \mathrm{O}_{4}$ is heated with 100.0 kg of aluminium. Work out the maximum mass of manganese that can be obtained from this reaction. 72 Kg
b 1.23 tonnes of ore are processed and 200.0 kg of manganese obtained. Calculate the percentage by mass of $\mathrm{Mn}_{3} \mathrm{O}_{4}$ in the ore. 22.5%

13 A hydrocarbon contains 88.8% C. 0.201 g of the hydrocarbon occupied a volume of $98.3 \mathrm{~cm}^{3}$ at 320 K and $1.00 \times 10^{5} \mathrm{~Pa}$.
a Determine the empirical formula of the hydrocarbon. $\mathrm{C}_{2} \mathrm{H}_{3}$
b Determine the molecular formula of the hydrocarbon. $\mathrm{C}_{4} \mathrm{H}_{6}$

Online Classes : Megalecture@gmail.com

14 Limestone is impure calcium carbonate. A 1.20 g sample of limestone is added to excess dilute hydrochloric acid and the gas collected; $258 \mathrm{~cm}^{3}$ of carbon dioxide was collected at a temperature of $27^{\circ} \mathrm{C}$ and a pressure of $1.10 \times 10^{5} \mathrm{~Pa}$.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a Calculate the number of moles of gas collected. 0.0114 MO
b Calculate the percentage purity of the limestone (assume that none of the impurities in the limestone react with hydrochloric acid to produce gaseous products)
$1525.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ copper(II) nitrate solution is added to $15.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{moldm}^{-3}$ potassium iodide. The ionic equation for the reaction that occurs is:

$$
2 \mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{CuI}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{aq})
$$

a Determine which reactant is present in excess. KI
b Determine the mass of iodine produced. 0.317 g
160.0810 g of a group 2 metal iodide, MI_{2}, was dissolved in water and made up to a total volume of $25.00 \mathrm{~cm}^{3}$.

Excess lead(II) nitrate solution $\left(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})\right)$ was added to the MI_{2} solution to form a precipitate of lead(II) iodide $\left(\mathrm{PbI}_{2}\right)$. The precipitate was dried and weighed and it was found that 0.1270 g of precipitate was obtained.
a Determine the number of moles of lead iodide formed. $2.755 \times 10^{-4} \mathrm{mOl}$
\mathbf{b} Write an equation for the reaction that occurs. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{MI}_{2} \longrightarrow \mathrm{PbI}_{2}+\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}$
c Determine the number of moles of MI_{2} that reacted. $2.755 \times 10^{-4} \mathrm{~m} 61$.
d Determine the identity of the metal, M. Calcium.
170.4000 g of hydrated copper sulfate $\left(\mathrm{CuSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}\right)$ is dissolved in water and made up to a total volume of $100.0 \mathrm{~cm}^{3}$ with distilled water. $10.00 \mathrm{~cm}^{3}$ of this solution is reacted with excess barium chloride $\left(\mathrm{BaCl}_{2}\right)$ solution. The mass of barium sulfate formed was $3.739 \times 10^{-2} \mathrm{~g}$.
a Calculate the number of moles of barium sulfate formed. $1.602 \times 10^{-4} \mathrm{~mol}$
b Write an equation for the reaction between copper sulfate solution and barium chloride solution.
c Calculate the number of moles of copper sulfate that reacted with the barium chloride. $1.602 \times 10^{-4} \mathrm{~mol}$
d Calculate the number of moles of CuSO_{4} in 0.4000 g of hydrated copper sulfate. $1.602 \times 10^{-3} \mathrm{~mol}$.
e Determine the value of x. S.
$2 \mathrm{NH}_{3}+3 \mathrm{CuO} \rightarrow \mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cu}$
\downarrow
2
$224 \mathrm{~cm}^{4}$
1
$x=112 \mathrm{~cm}^{3}$
$224 \mathrm{~cm}^{3}$ of NH_{3} should give me $112 \mathrm{~cm}^{3}$ of N_{2} but we got about $84 \mathrm{~cm}^{3}$
yield $=\frac{84}{112} \times 100 \%$

$$
=76 \%
$$

(a) $\overline{\mathrm{Nn}_{3} \mathrm{O}_{4}}=3(54.9)+4(16)=228.7$

$$
\begin{aligned}
& \mathrm{Al}=27 \\
& M_{n}=54.9
\end{aligned}
$$

$\mathrm{Mn}_{3} \mathrm{O}_{4}$: Al

$$
\frac{100000}{228.7}: \frac{100000}{27}
$$

$437.2 \mathrm{~mol}: 3703 \mathrm{~mol}$ Provided amount of moles.

$$
\begin{aligned}
& 1: 8 \\
& 1 \\
& \text { L.F. } \\
& \eta M_{n}=\frac{437.2}{3} \times 9=1311.59 \mathrm{~mol} \\
& \text { mass }=1311.59 \times 54.9=72 \mathrm{~kg}
\end{aligned}
$$

(b) η of $M n=\frac{200000}{54.9}=3,642.98 \mathrm{~mol}$

$$
\eta M_{n_{3} \mathrm{O}_{4}}=\frac{3,642.98}{9} \times 3=1.214 .3 \mathrm{~mol} \quad \% \text { Mass }=\frac{272.3}{1230} \times 100=22.5 \%
$$

$$
\begin{aligned}
\text { Mass } & =1214.3 \times 228.11 \\
& =277.3 \mathrm{~kg} \\
\% \text { Mass } & =\frac{277.3}{1230} \times 100=22.5 \%
\end{aligned}
$$

(a)

	Online Classes : Megalecture@gmail. C
$\frac{88.8}{12}$ 7.4	11.2 1 2
	11.2
	1.5
	3

(b) 98.3 $\mathrm{cm}^{3} @ 320 \mathrm{~K}$

$$
\begin{aligned}
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
& V_{1}=\frac{98.3 \times 320}{298}=105.56 \mathrm{~cm}^{3} \\
& \eta=\frac{105.56 \mathrm{~cm}^{3}}{24000 \mathrm{~cm}^{3} \mathrm{mal}^{-1}} \\
& =4.398 \times 10^{-3} \mathrm{~mol} \\
& M r=\frac{0.201}{4.398 \times 10^{-3}}=45.7 \\
& \text { Mr of } \mathrm{C}_{2} \mathrm{H}_{3}=2(12)+3=27 \\
& \text { Mr through: } \mathrm{MrC}_{2} \mathrm{H}_{3} \\
& \text { Canc } \\
& 45.7: 27 \\
& 1.7: 1 \\
& 2 \approx 1 \text { Molecular Formula }=\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)_{3} \\
& =\mathrm{C}_{4} \mathrm{H}_{6} \text {. }
\end{aligned}
$$

MEGA LECTURE
For Live Online Classes megalecture@gmail.com

14
(a)

$$
\begin{gathered}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
\frac{(258)(110000)}{300}=\frac{V_{2}(101000)}{298} \\
V_{2}=279.12 \mathrm{~cm}^{3} \\
\eta=\frac{279.12 \mathrm{~cm}^{3}}{24000 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}}=11.629 \times 10^{-3} \mathrm{~mol}
\end{gathered}
$$

(b)

$$
\begin{aligned}
\eta \mathrm{CaCO}_{3} & =\eta \mathrm{CO}_{2} \\
& =11.6 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

$$
\text { Marl }=\eta \times M r
$$

$$
=\left(11.6 \times 10^{-3}\right)(60+40.1)
$$

$$
=1.16 \mathrm{~g}
$$

$$
\text { Purity }=\frac{1.16}{1.20} \times 100 \%=96.7 \%
$$

15
a. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}=\frac{25}{1000} \times 0.1=0.0025 \mathrm{~mol}=2.5 \times 10^{-3} \mathrm{~mol}$.
$K I=\frac{15}{1000} \times 0.5=7.5 \times 10^{-3} \mathrm{~mol}$.

$$
\mathrm{Cu}^{2+}: K I
$$

$$
\begin{array}{rl}
2 & 1 \\
2.5 & 5 \rightarrow K I \text { is in excess. }
\end{array}
$$

(b)

$$
\begin{array}{cc}
\mathrm{Cu}^{2+}: & \mathrm{I}_{2} \\
2: & 1
\end{array}
$$

$$
\begin{gathered}
2: 1 \\
2.5 \times 10^{-3}: 1.25 \times 10^{-3} \rightarrow \eta \text { of } I_{2} \text { produced. }
\end{gathered}
$$

Man of $I_{2}=1.25 \times 10^{-3} \times(127 \times 2)=0.317 \mathrm{~g}$

16/

$$
\text { Mans of } \mathrm{Pb} I_{2}=0.127 \mathrm{~g}
$$

(a) $\quad \eta_{\text {of }} \mathrm{PbI}_{2}=\frac{0.137}{127 \times 2+207}=2.75 \times 10^{-4} \mathrm{~mol}$.
(b)

$$
P b\left(\mathrm{NO}_{3}\right)_{2}+M I_{2} \longrightarrow P b I_{2}+M\left(\mathrm{NO}_{S_{2}}\right)_{2}
$$

(c) η of $M I_{2}=2775 \times 10^{-4} \mathrm{~mol}$
(d) $\quad \eta=\frac{\mathrm{man}}{m r}$

$$
M_{r}=\frac{0.081}{275 \times 10^{-1}}=294.5
$$

$M+2(127)=294.5=40.5$ calcium .

MEGA LECTURE

a. $\eta \mathrm{BabO}_{4}=\frac{3.739 \times 10^{-2}}{137+32.1+4(16)}=1.6 \times 10^{-4} \mathrm{~mol}$.
b. $\mathrm{CuSO}_{4}+\mathrm{BaCl}_{2} \longrightarrow \mathrm{BaSO}_{4}+\mathrm{CuCl}_{2}$
c. $\eta \mathrm{CuSO}_{4}=1.6 \times 10^{-4} \mathrm{~mol}$
d. $1.6 \times 10^{-4} \mathrm{~mol}$ of CuSO_{4} was in $10 \mathrm{~cm}^{3}$, in $100 \mathrm{~cm}^{3}$ will have $1.6 \times 10^{-3} \mathrm{~mol}$. e. $\operatorname{MrCuSO} \cdot \mathrm{XH}_{2} \mathrm{O}=\frac{0.4}{1.6 \times 10^{-3}}=250$

$$
63.5+32.1+4(16)+18 x=250
$$

$$
x=5
$$

