

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com

Online Classes : Megalecture@gmail.com

8 Barium chloride solution reacts with sodium sulfate solution according to the equation

 $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$

When excess barium chloride solution is reacted with 25.00 cm^3 of sodium sulfate solution, 0.2334 g of BaSO₄ (molar mass $233.4 \text{ g} \text{ mol}^{-1}$) is precipitated.

The concentration of sodium ions in the sodium sulfate solution was:

- $\begin{array}{c} \textbf{A} & 0.080\,00\,\text{mol}\,\text{dm}^{-3} \\ \textbf{B} & 0.040\,00\,\text{mol}\,\text{dm}^{-3} \end{array} \qquad \qquad \textbf{6} \quad \textbf{C} \quad 0.001\,000\,\text{mol}\,\text{dm}^{-3} \\ \textbf{D} \quad 0.002\,000\,\text{mol}\,\text{dm}^{-3} \end{array}$
- **9** When potassium chlorate(V) (molar mass 122.6 g mol⁻¹) is heated, oxygen gas (molar mass 32.0 g mol⁻¹) is produced:

 $2\text{KClO}_3(s) \rightarrow 2\text{KCl}(s) + 3\text{O}_2(g)$

When 1.226 g of potassium chlorate(V) is heated, 0.320 g of oxygen gas is obtained. The percentage yield of oxygen is:

- **A** 100% **B** 66.7% **C** 26.1% **D** 17.4%
- 10 Elemental analysis of a nitrogen oxide shows that it contains 2.8 g of nitrogen and 8.0 g of oxygen. The empirical formula of this oxide is:

Α	NO	B	NO_2	С	N_2O_3	D	N_2O_5
---	----	---	--------	---	----------	---	----------

11 Nitrogen can be prepared in the laboratory by the following reaction:

 $2NH_3(g) + 3CuO(s) \rightarrow N_2(g) + 3H_2O(l) + 3Cu(s)$

If 224 cm^3 of ammonia, when reacted with excess copper oxide, produces 84 cm^3 of nitrogen, calculate the percentage yield of nitrogen. All gas volumes are measured at STP. $\frac{15}{10}$ [3]

12 Manganese may be extracted from its ore, hausmannite, by heating with aluminium.

 $3Mn_3O_4 + 8Al \rightarrow 4Al_2O_3 + 9Mn$

- a 100.0 kg of Mn_3O_4 is heated with 100.0 kg of aluminium. Work out the maximum mass of manganese that can be obtained from this reaction. **7**2 Kg
 [4]
- **b** 1.23 tonnes of ore are processed and 200.0 kg of manganese obtained. Calculate the percentage by mass of Mn_3O_4 in the ore. 22.5% [3]
- 13 A hydrocarbon contains 88.8% C. 0.201 g of the hydrocarbon occupied a volume of 98.3 cm³ at 320 K and 1.00×10^5 Pa.
 - **a** Determine the empirical formula of the hydrocarbon. $C_2 \mu_3$ [3]
 - **b** Determine the molecular formula of the hydrocarbon. C_{ij} [3]

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com

Online Classes : Megalecture@gmail.com

14 Limestone is impure calcium carbonate. A 1.20 g sample of limestone is added to excess dilute hydrochloric acid and the gas collected; 258 cm^3 of carbon dioxide was collected at a temperature of 27 °C and a pressure of $1.10 \times 10^5 \text{ Pa}$.

 $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$

- a Calculate the number of moles of gas collected. 0.0114 Mol [3]
- b Calculate the percentage purity of the limestone (assume that none of the impurities in the limestone react with hydrochloric acid to produce gaseous products)
 95%
- **15** 25.0 cm^3 of $0.100 \text{ mol dm}^{-3}$ copper(II) nitrate solution is added to 15.0 cm^3 of $0.500 \text{ mol dm}^{-3}$ potassium iodide. The ionic equation for the reaction that occurs is:

 $2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2(aq)$

- a Determine which reactant is present in excess. K] [3]
- **b** Determine the mass of iodine produced. 0.277
- 16 0.0810 g of a group 2 metal iodide, MI₂, was dissolved in water and made up to a total volume of 25.00 cm³. Excess lead(II) nitrate solution (Pb(NO₃)₂(aq)) was added to the MI₂ solution to form a precipitate of lead(II) iodide (PbI₂). The precipitate was dried and weighed and it was found that 0.1270 g of precipitate was obtained.

a	Determine the number of moles of lead iodide formed. $2.755 \times 10^{-4} \text{ Mol}$	[2]
b	Write an equation for the reaction that occurs. $Pb(N_{3})_{2} + MI_{2} \longrightarrow PbI_{2} + M(N_{3})_{2}$	[1]
c	Determine the number of moles of MI_2 that reacted. 2.755 x 10 ⁻⁴ mbl.	[1]
d	Determine the identity of the metal, M. Calcium.	[3]

17 0.4000 g of hydrated copper sulfate (CuSO₄.xH₂O) is dissolved in water and made up to a total volume of 100.0 cm³ with distilled water. 10.00 cm³ of this solution is reacted with excess barium chloride (BaCl₂) solution. Cusoy+ Bac12 -> Baboy+Cull2 The mass of barium sulfate formed was 3.739×10^{-2} g. Calculate the number of moles of barium sulfate formed. $1.602 \times 10^{-9} mol$ [2] **b** Write an equation for the reaction between copper sulfate solution and barium chloride solution. [1] Calculate the number of moles of copper sulfate that reacted with the barium chloride. 1.602×10^{-4} mol [1] С **d** Calculate the number of moles of CuSO₄ in 0.4000 g of hydrated copper sulfate. $1.602 \times 10^{-3} \text{ mol}^{-3}$. [1] Determine the value of x. 5. [3] e

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com

$$\frac{11}{2} = 2NH_{3} + 3CaO \rightarrow N_{4} + 3H_{4}O + 3Ca$$

$$\frac{1}{2} = 1$$

$$224un^{3} = 7$$

$$x = 1020m^{3}$$

$$224un^{3} of NH_{5} = 2hould give me = 112cm^{3} = 4 = N_{2} = but we get about = 84cm^{3}$$

$$\frac{11}{12} = 3\frac{1}{12}$$

$$\frac{11}$$

 $\begin{array}{cccc} Online \ Classes : Megalecture@gmail.com\\ C & H\\ 88.8 & 11.2\\ \hline 12 & 1\\ 7.4 & 11.2\\ I & .1.5\\ 2 & .3 & \longrightarrow & C_2 H \end{array}$

13/

(a)

98.3cm³ @ 320K (b) $\frac{V_1}{T_1} = \frac{V_2}{T_1}$ $\eta = \frac{105.56 \text{ cm}^3}{34000 \text{ cm}^3 \text{ mel}^{-1}}$ $= 4.398 \times 10^{-3}$ mel $Mr = \frac{0.201}{4.398 \times 10^{-3}} = 45.7$ $Mr \, of \, C_2 H_3 = \lambda (12) + 3 = 27$ Mr through : Mr C2H3 Ealc 45.7 : 27 1.7 : 1 ~ 1 Moleculor Formula = $(C_2 H_3)_3$ 2 = CyH6. www.megalecture.com MEGA LECTURE

For Live Online Classes megalecture@gmail.com

(a)

$$\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{a}}$$

$$\frac{(258)(110000)}{300} = \frac{V_{a}(101000)}{298}$$

$$V_{a} = 279.12 \text{ cm}^{3}$$

$$\eta = \frac{279.12 \text{ cm}^{3}}{24000 \text{ cm}^{3} \text{ mol}^{-1}} = 11.629 \times 10^{-3} \text{ mol}$$

(b)
$$\eta CaCO_3 = \eta CO_2$$

= 11.6 × 10⁻³ mol.

14,

$$Mau1 = \eta \times Mr \\ = (11.6 \times 10^{-3})(60 + 40.1) \\ = 1.16g$$

$$Purity = 1.16 \times 100 \text{ K} = 96.7 \text{ %}$$

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com

$$\begin{array}{l}
\text{15}\\
\text{a.} \quad Cu(NO_3)_{\mathcal{A}} = \frac{25}{1000} \times 0.1 = 0.0025 \, \text{mol} = 2.5 \times 10^{-3} \, \text{mol}.\\
\text{KI} = \frac{15}{1000} \times 0.5 = 7.5 \times 10^{-3} \, \text{mol}.\\
\text{Cu}^{2+} \quad \text{KI}\\
\text{A} \quad : \quad 1\\
\text{A} \quad : \quad 1\\
\text{A} \quad : \quad 1\\
\text{A} \quad : \quad 5 \quad \rightarrow \quad \text{KI in in excess.}\\
\end{array}$$

(b)
$$Cu^{2+}$$
: I_2
 2 : I
 3.5×10^{-3} : $I.35 \times 10^{-3} \rightarrow \eta \ 07 \ I_2 \ produced$.

Mans of
$$I_2 = 1.25 \times 10^{-3} \times (127 \times 2) = 0.317g$$

$$16_{1}$$
 Man of $PbI_{2} = 0.127g$

(a)
$$\eta \circ I P \circ I_{a} = \frac{0.127}{127 \times 2 + 207} = 2.75 \times 10^{-4} \text{ mol}$$

$$(b) \qquad Pb(N_{2})_{2} + MI_{2} \longrightarrow PbI_{2} + M(N_{2})_{2}$$

(C)
$$\eta \text{ of } MI_2 = 2.75 \times 10^{-4} \text{ mol}$$

(d)
$$\eta = \frac{MoM}{M\gamma}$$

$$\frac{1}{2.75 \times 10^{-4}}$$

$$M + 2(127) = 294.5 = 40.5$$
 Calcium

www.megalecture.com **MEGA LECTURE** For Live Online Classes megalecture@gmail.com

a.
$$\eta \ Bable q = \frac{3.739 \times 10^{-2}}{137 + 32.1 + 4(16)} = 1.6 \times 10^{-4} \text{ mol.}$$

17

b.
$$CUSO_{4} + BaCl_{2} \longrightarrow BasO_{4} + CuCl_{2}$$

c.
$$\eta CusO_{4} = 1.6 \times 10^{-4} \text{ mol}$$

d. $1.6 \times 10^{-4} \text{ mol}$ of CusO_{4} was in 10 cm³, in 100 cm³ well have $1.6 \times 10^{-3} \text{ mol}$.
e. $Mr CusO_{4} \cdot xH_{2}O = \frac{O.4}{1.6 \times 10^{-3}} = 250$
 $\chi = 5$.

www.megalecture.com

MEGA LECTURE For Live Online Classes

megalecture@gmail.com