# Marking Scheme : Organic (IGCSE 0620)

#### Question 1



#### Question 2

| 5 | (a) (i) | M1 Contain carbon, hydrogen and oxygen (only)                            | [1] |
|---|---------|--------------------------------------------------------------------------|-----|
|   |         | M2 hydrogen and oxygen is in a 2:1 ratio (or in the same ratio as water) | [1] |
|   | (ii)    | M1 -O- linkage                                                           | [1] |
|   |         | M2 3 monomer units with 3 blocks and 3 Oxygen atoms Cond                 | [1] |
|   |         |                                                                          |     |
|   |         | -0                                                                       |     |
|   |         |                                                                          |     |

#### Question 3

3

| (a) | (i)   | $C_4H_8$ only $CH_2$ (Allow $C_1H_2$ )                                                                                                                                                    | [2]       |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     | (ii)  | Any unambiguous structural formula of methyl cyclopropane or but-1-ene or but-2-ene methyl propene                                                                                        | or<br>[1] |
|     | (iii) | M1 same molecular formula                                                                                                                                                                 | [1]       |
|     |       | M2 different structural formulae or different structures<br>or different arrangement of atoms                                                                                             | [1]       |
|     | (iv)  | If 'No':<br>one an alkane, the other an alkene<br>or<br>one is saturated / has single bonds, the other is unsaturated / has a double bond<br>ignore: references to the 'functional group' |           |
|     |       | If 'yes'<br>both alkanes <b>or</b> both saturated<br>ignore: references to the 'functional group'                                                                                         | [1]       |
|     |       |                                                                                                                                                                                           |           |



| two     | rect ester linkage [1]<br>o ester linkages (COND on M1)<br>ntinuation (COND on M2)                                                                                                           | [1]<br>[1]        |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (c) (i) | add bromine water/bromine<br>turns colourless<br>remains brown/orange/reddish brown/yellow                                                                                                   | [1]<br>[1]<br>[1] |
|         | ALLOW: potassium manganate(VII) (acidic or alkaline)<br>correct colour colourless/green or brown ppt<br>stays pink/purple                                                                    | [1]<br>[1]<br>[1] |
| (ii)    | ester 1                                                                                                                                                                                      | [1]               |
|         | COND alkyl group is C <sub>n</sub> H <sub>2n+1</sub> which is NOT C <sub>17</sub> H <sub>33</sub><br>or C <sub>17</sub> H <sub>35</sub> is C <sub>n</sub> H <sub>2n+1</sub> or less hydrogen | [1]               |
| (iii)   | soap <b>or</b> (sodium) salt (of a carboxylic acid) <b>or</b> carboxylate                                                                                                                    | [1]               |
|         | alcohol                                                                                                                                                                                      | [1]               |
|         |                                                                                                                                                                                              | [Total: 17]       |

| 20 | cot | .0.1. |                                                         |             |
|----|-----|-------|---------------------------------------------------------|-------------|
| 5  | (a) | pro   | tective / layer <b>and</b> of oxide                     | [1]         |
|    | (b) |       | rect repeat unit<br>tinuation shown                     | [1]<br>[1]  |
|    | (c) | (i)   | catalyst<br>biological / protein                        | [1]<br>[1]  |
|    |     | (ii)  | hydrochloric acid / any strong acid / any strong alkali | [1]         |
|    |     | (iii) | amino acids                                             | [1]         |
|    |     | (iv)  | chromatography                                          | [1]         |
|    |     | (v)   | nylon / kevlar                                          | [1]         |
|    | (d) | (i)   | non-biodegradable                                       | [1]         |
|    |     | (ii)  | $CH_2=CH(C_6H_5)$                                       | [1]         |
|    |     |       |                                                         | [Total: 11] |
|    |     |       |                                                         |             |

| <u> </u> | _ |
|----------|---|
| Question |   |
| Question |   |

| Qu | esu | 011   |                                                                                                                                                     |                   | Que | estion | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | (a) | (i)   | contains <u>only</u> carbon, hydrogen and oxygen<br>hydrogen (atom) to oxygen (atom) ratio is 2:1<br><b>ALLOW</b> : C:H:O as 1:2:1 or $C_n(H_2O)_n$ | [1]<br>[1]        | 7   |        | i) hydrogen (ator<br>NOT: substitut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |     | (ii)  | condensation                                                                                                                                        | [1]               |     | (i     | i) light required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |     |       | polymerisation                                                                                                                                      | [1]               |     | (b) c  | exothermic reactior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |     | (1)   |                                                                                                                                                     | 141               |     | Ì ε    | endothermic reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | (d) | (i)   | cells / micro-organisms / plants / animals / metabolic reactions<br>obtaining energy from food / glucose / nutrients                                | [1]<br>[1]        |     | t      | akes in energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |     | (ii)  | $2C_2H_5OH + 2CO_2$<br>allow: $C_2H_6O$ for $C_2H_5OH$<br>not balanced = (1) only                                                                   | [2]               |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |     | (iii) | to prevent aerobic respiration / to get anaerobic respiration / to prevent ethanoic a                                                               | cid /             | Que | estio  | n 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |     |       | lactic acid / carboxylic acids being formed / to prevent oxidation of ethanol                                                                       | [1]               | 5   | (a) (  | (i) have same mo<br>they have diffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | (c) |       | played formula of methyl butanoate                                                                                                                  | [2]               |     | (i     | ii) CH <sub>3</sub> -CH <sub>2</sub> -CH=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |     |       | TE: all bonds must be shown<br>TE: award (1) if error in alkyl groups but correct displayed structure of –COO–                                      |                   |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | (d) | (i)   | ALLOW: if only part of glycerol molecule is circled as long as it involves an OH group                                                              | [1]               |     | (b) (  | (i) CH <sub>2</sub> -(Br)-CH <sub>2</sub> B<br>NOT: C <sub>2</sub> H <sub>4</sub> Br <sub>2</sub><br>dibromoethane<br>NOTE: number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |     | (11)  | saturated correct reason based on group $C_{17}H_{35}$ / all C–C bonds / no C = C bonds                                                             | [1]               |     | (i     | ii) CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>3</sub><br>NOT: C <sub>3</sub> H <sub>8</sub><br>propane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | (   |       | salt / carboxylate / alkanoate<br>(making) soap<br>ACCEPT: detergent / washing                                                                      | [1]<br>[1]        |     | (ii    | <li>ii) CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub></li> |
|    | (e) | cont  | ast one correct amide linkage –CONH–<br>inuation shown at both ends of chain<br>ram showing three (different) amino acid residues                   | [1]<br>[1]<br>[1] |     | (c) (  | (i) CH₃-CH=CH-C<br>CH₃-CH=CH-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |     |       | [Total                                                                                                                                              |                   |     | (i     | ii) pink / purple<br>colourless<br>NOT: clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |     |       |                                                                                                                                                     |                   |     | (<br>( | CH <sub>2</sub> -CH(CN)-CH <sub>2</sub> -<br>correct repeat unit<br>C <b>OND</b> : at least 2 u<br>continuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |     |       |                                                                                                                                                     |                   |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| 7 | (a) | (i)  | hydrogen (atoms) replaced by (atoms) of a different element e.g. chlorine <b>NOT</b> : substitute | [1] |
|---|-----|------|---------------------------------------------------------------------------------------------------|-----|
|   |     | (ii) | light required                                                                                    | [1] |
|   | (b) |      | othermic reaction gives out energy                                                                | [1] |
|   |     |      | es in energy                                                                                      | [1] |

| 5 | (a) | (i)   | have same molecular formula / both are $C_5H_{12}$ they have different structural formulae / different structures                            | [1]<br>[1] |
|---|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|
|   |     | (ii)  | $CH_3$ - $CH_2$ - $CH$ = $CH$ - $CH_3$ / any other correct isomer                                                                            | [1]        |
|   | (b) | (i)   | $CH_2$ -(Br)- $CH_2Br$<br>NOT: $C_2H_4Br_2$                                                                                                  | [1]        |
|   |     |       | dibromoethane<br>NOTE: numbers not required but if given must be 1, 2                                                                        | [1]        |
|   |     | (ii)  | CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>3</sub><br>NOT: C <sub>3</sub> H <sub>8</sub>                                                      | [1]        |
|   |     |       | propane                                                                                                                                      | [1]        |
|   |     | (iii) | CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -OH / CH <sub>3</sub> -CH <sub>2</sub> -CH(OH)-CH <sub>3</sub><br>butanol | [1]<br>[1] |
|   |     |       | numbers not required but if given must be correct and match formula                                                                          |            |
|   | (c) | (i)   | $CH_3$ - $CH=CH-CH_2$ - $CH_3$<br>$CH_3$ - $CH=CH-CH_3$                                                                                      | [1]<br>[1] |
|   |     | (ii)  | pink / purple                                                                                                                                | [1]        |
|   |     | (11)  | colourless<br>NOT: clear                                                                                                                     | [1]        |
|   |     |       | NUT. Gear                                                                                                                                    |            |
|   | (d) |       | I <sub>2</sub> -CH(CN)-CH <sub>2</sub> -CH(CN)-<br>rect repeat unit CH <sub>2</sub> -CH(CN)                                                  | [1]        |
|   |     | со    | ND: at least 2 units in diagram<br>tinuation                                                                                                 | [1]<br>[1] |
|   |     |       |                                                                                                                                              | [Total:16] |

| Question 10                                                                                                                                                |            | Question 12                                                                                                                                                               |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (c) (i) amide / peptide;                                                                                                                                   | [1]        | 7 (a) (i) C <sub>n</sub> H <sub>2n+1</sub> OH                                                                                                                             | [1]               |
| (ii) named strong acid / alkali;<br>allow: HCl/ enzymes                                                                                                    | [1]        | (ii) 116-17 = 99, 2n+1 = 99, n = 7<br>for any evidence of working out<br>C <sub>7</sub> H <sub>15</sub> OH                                                                | [1]<br>[1]        |
| (iii) amino acid;<br>allow: peptides                                                                                                                       | [1]        | (iii) 4bps around C;<br>1 bp on each hydrogen;<br>2bps and 2nbps on oxygen;                                                                                               | [1]<br>[1]<br>[1] |
| Question 11                                                                                                                                                |            | <ul> <li>(b) (i) increases yield / moves equilibrium to RHS / favours forward reaction;<br/>high pressure favours side with smaller number of (gas) molecules;</li> </ul> | [1]<br>[1]        |
| <ul> <li>5 (a) (i) add bromine water / bromine / aqueous bromine;<br/>colourless;</li> </ul>                                                               | [1]<br>[1] | <ul> <li>(ii) any two from:<br/>higher temperature / catalyst causes faster reaction;<br/>comment about compromise conditions to give best rate and yield;</li> </ul>     |                   |
| <b>or</b> add potassium manganate(VII) / permanganate; (ignore acid or alkali) colourless;                                                                 | [1]<br>[1] | at 250°C (lower temp) higher yield / forward reaction favoured;<br>at 350°C (higher temp) lower yield / back reaction favoured;                                           | [3]               |
| <ul> <li>(ii) add metal / carbonate / insoluble base / strong alkali allow: ammonia with an indicator / use pH meter;</li> <li>COND: on reagent</li> </ul> | [1]        | (c) (i) methanoic acid;<br>correct SF showing all bonds;                                                                                                                  | [1]<br>[1]        |
| metal - hydrogen given off / metal dissolves / effervescence / gas given off / burning splint pops;                                                        |            | accept: -OH (ii) methanoate;                                                                                                                                              | [1]               |
| carbonate - carbon dioxide given off / effervescence / gas given off / limewater milky;                                                                    | X          |                                                                                                                                                                           | [Total: 14]       |
| insoluble base - solution formed / dissolves;                                                                                                              |            |                                                                                                                                                                           |                   |
| alkali - use of indicator to show neutralisation / temperature increase;<br>pH meter - gives pH less than 7                                                | [1]        | Question 13                                                                                                                                                               |                   |
|                                                                                                                                                            |            | 3 (a) (i) correct structure of an isomer e.g. 2-chloropropane;                                                                                                            | [1]               |
| <ul> <li>(b) ethyl propenoate;<br/>correct SF all bonds shown;;<br/>allow: [1] for correct displayed ester linkage</li> </ul>                              | [1]<br>[2] | (ii) chlorine;<br>light / heat / lead tetraethyl;                                                                                                                         | [1]<br>[1]        |
| (c) (i) number of atoms of each element;<br>in one molecule;                                                                                               | [1]<br>[1] |                                                                                                                                                                           |                   |
| (ii) 2;                                                                                                                                                    | [1]        |                                                                                                                                                                           |                   |
|                                                                                                                                                            | [1]        |                                                                                                                                                                           |                   |
| (iii) C=C                                                                                                                                                  |            |                                                                                                                                                                           |                   |

| (iii)   | could produce 2-chloropropane;                                                                                  | [1] ( | Oue | estion 2 | 4                                                                                                                                      |                   |
|---------|-----------------------------------------------------------------------------------------------------------------|-------|-----|----------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| . ,     | could produce HCl;                                                                                              | [1]   |     |          |                                                                                                                                        | [1]               |
|         | or<br>could produce dichloropropanes = [2]                                                                      |       | 0   | (a) (i)  | amino acid / peptides;<br>salt / carboxylate or soap / fatty acid or glycerine / alcohol;<br>sugars or glucose;<br>accept: named sugar | [1]<br>[1]<br>[1] |
| (b) (i) | add silver nitrate / lead nitrate;                                                                              | [1]   |     | (ii)     | polyester:                                                                                                                             | [1]               |
|         | yellow precipitate;<br>note: do not insist on presence of dilute nitric acid                                    | [1]   |     | (1)      | allow: named polyester                                                                                                                 | [1]               |
|         |                                                                                                                 |       |     |          | polyamide;                                                                                                                             | [1]               |
| (ii)    | ) propanol / propan-1-ol;                                                                                       | [1]   |     |          | allow: nylon                                                                                                                           |                   |
| (c) (i) | for A;                                                                                                          |       |     |          | correct amide linkage;                                                                                                                 | [1]               |
| .,.,    | reaction slower;                                                                                                |       |     |          | ond amide linkage correctly orientated<br>HCO – followed by – NHCO –:                                                                  | [1]               |
|         | decreased collision rate;<br>less bromobutane present / concentration of bromobutane less / less reacting       |       |     |          | e: monomers are amino acids not diamines or dicarboxylic acid                                                                          | [1]               |
|         |                                                                                                                 | [2]   |     |          |                                                                                                                                        |                   |
|         | any two                                                                                                         |       |     | (c) brou | nine/bromine water/aqueous bromine;                                                                                                    | [1]               |
|         | accept: reverse arguments for B                                                                                 |       |     |          | aturated - brown / orange to colourless <b>not:</b> clear                                                                              | [1]               |
| (ii)    | halogens Cl > Br > I reactivity / reactivity decreases down group;                                              | [1]   |     | satu     | urated - stays brown / orange                                                                                                          | [1]               |
| .,      | organic halides I > Br > Cl / reactivity increases down group;                                                  | [1]   |     | or       | alkaline potassium manganate(VII);                                                                                                     |                   |
|         | opposite without explanation = [1]                                                                              |       |     | 0        | from purple/pink to green / brown;                                                                                                     |                   |
| (iii)   | any three from:                                                                                                 |       |     |          | stays purple;                                                                                                                          |                   |
| (,      | less energy;                                                                                                    |       |     | or:      | acidic potassium manganate(VII)<br>from purple/pink to colourless; <b>not:</b> clear                                                   |                   |
|         | particles move slower;<br>less collisions / fewer particles have energy to react / fewer successful collisions; |       |     |          | stays purple;                                                                                                                          |                   |
|         |                                                                                                                 | [3]   |     |          |                                                                                                                                        | T-1-1-101         |
|         |                                                                                                                 |       |     |          |                                                                                                                                        | [Total: 10]       |
|         | [Total:                                                                                                         | 15] - |     | -        |                                                                                                                                        |                   |
|         |                                                                                                                 |       |     |          |                                                                                                                                        |                   |

| 4 | (a) | it is an alkane <b>or</b> hydrocarbon<br>it is saturated <b>or</b> only C—C single bonds<br>accept: no double bonds | [1]<br>[1] |
|---|-----|---------------------------------------------------------------------------------------------------------------------|------------|
|   | (b) | molecular formula $C_{6}H_{12}$<br>empirical formula $CH_{2}$                                                       | [1]<br>[1] |
|   | (c) | correct structural formula of cyclobutane                                                                           | [1]        |

| (d) (i) C <sub>6</sub> H <sub>12</sub>                                                                                                      | [1]        | Question 17                                                                                                                                                                                               |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| accept: a correct structural formula                                                                                                        | 1.1        | 8 (a) proton donor;                                                                                                                                                                                       | [1]               |
| (ii) same molecular formula <b>not</b> : chemical formula different structural formulae / structures                                        | [1]<br>[1] | <ul> <li>(b) equal concentrations of both (solutions);</li> <li>add Universal indicator / determine pH / pH paper;</li> </ul>                                                                             | [1]<br>[1]        |
| (e) add bromine (water) or (I)                                                                                                              | [1]        | ethylamine has lower pH / ORA;<br>or                                                                                                                                                                      | [1]               |
| cond: (remains) brown or orange or red or yellow                                                                                            | [1]        | equal concentration of both (solutions);<br>measure conductivity of aqueous ethylamine and sodium hydroxide;                                                                                              | [1]<br>[1]        |
| <b>cond</b> : changes from brown, etc. to colourless or decolourises <b>not</b> : clear                                                     | [1]        | ethylamine will have lower conductivity / sodium hydroxide will have higher conductivity;                                                                                                                 | [1]               |
| OR<br>potassium manganate(VII)<br>note: oxidation state not essential but if given must be correct or [0]<br>accept: potassium permanganate | [1]        | <ul> <li>(c) add strong(er) base / NaOH / KOH;<br/>warm / heat;</li> <li>(d) (ethylamine forms) hydroxide ions / OH<sup>-</sup> (in water);</li> </ul>                                                    | [1]<br>[1]<br>[1] |
| cond: remains pink / purple                                                                                                                 | [1]        | <ul> <li>(d) (ethylamine forms) hydroxide <u>ions</u> / OH<sup>−</sup> (in water);<br/>hydroxide <u>ions</u> / OH<sup>−</sup> reacts with iron(III) <u>ions</u> / Fe<sup>3+</sup>;</li> <li>or</li> </ul> | 1.1               |
| <b>cond</b> : changes from pink to colourless <b>(acidic)</b><br><b>not</b> : clear                                                         | [1]        | iron(III) hydroxide / Fe(OH) <sub>3</sub> (forms as a brown precipitate);<br><b>note</b> : balanced or unbalanced ionic equation i.e. $Fe^{3+} + (3)OH^- \rightarrow Fe(OH)_3$ scores b<br>marks          | [1]<br>ooth       |
| cond: change from pink to green / brown (alkaline)                                                                                          |            |                                                                                                                                                                                                           |                   |
| [Tota                                                                                                                                       | al: 11]    |                                                                                                                                                                                                           |                   |
| Question 16                                                                                                                                 |            |                                                                                                                                                                                                           |                   |

| 1 | (a) | (i)  | contains carbon and hydrogen<br>cond: only / just                                                      | [1]<br>[1]            |
|---|-----|------|--------------------------------------------------------------------------------------------------------|-----------------------|
|   |     | (ii) | (different) boiling points<br>cond: separate                                                           | [1]<br>[1]            |
|   | (b) | bitu | umen-making roads / roofs / water-proofing, etc.                                                       | [1]                   |
|   |     |      | ricating fraction – waxes / vaseline / grease, etc. or machinery example, e.g. ges / reducing friction | (oil a) bike /<br>[1] |
|   |     | par  | raffin fraction - jet fuel / (home) heating or tractors or cooking or lighting                         | [1]                   |
|   |     | gas  | soline fraction – petrol or fuel for cars / vans / trucks                                              | [1]                   |
|   |     |      |                                                                                                        | [Total: 8]            |
|   |     |      |                                                                                                        |                       |

7

| lesti | on                                        | 18                                                                                                                                                                                                                                                                                                                                                             |            | Qu | esti | on          | 19                         |
|-------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|------|-------------|----------------------------|
| (a)   | (i)                                       | CH <sub>2</sub> /H <sub>2</sub> C                                                                                                                                                                                                                                                                                                                              | [1]        | 5  | (a)  | (i)         |                            |
|       | (ii)                                      | same ratio of C:H (atoms) / all cancel to CH <sub>2</sub> / because general formula is $C_nH_{2n}$ / sa ratio of atoms or elements (in the compound) / C:H ratio is 1:2;                                                                                                                                                                                       | ame<br>[1] |    |      | (ii)        | ar                         |
| (b)   | (i)                                       | propanoic / propionic (acid);<br>ethanoic / acetic (acid);                                                                                                                                                                                                                                                                                                     | [1]<br>[1] |    |      | (iii)       |                            |
|       | (ii)                                      | formula of ethene / but-2-ene / any symmetrical alkene;                                                                                                                                                                                                                                                                                                        | [1]        |    | (b)  | (i)<br>(ii) |                            |
| (c)   | (i)                                       | CH <sub>3</sub> CH(Br)CH <sub>2</sub> Br                                                                                                                                                                                                                                                                                                                       | [1]        |    |      | (iii)       | ye                         |
|       | (ii)                                      | $CH_3CH(OH)CH_3 / CH_3CH_2CH_2OH / C_3H_7OH$                                                                                                                                                                                                                                                                                                                   | [1]        |    |      | ,           | er<br>no                   |
| (d)   |                                           |                                                                                                                                                                                                                                                                                                                                                                |            |    |      |             | re<br>ca                   |
|       | -                                         | $- \left[ - CH_2 - CH_{-} \right]_{n}$<br>CH <sub>3</sub>                                                                                                                                                                                                                                                                                                      |            |    | (c)  | (i)         | w<br>pr<br>w               |
|       | cor<br>ace                                | rect unit;<br>cept: more than one repeat unit<br>ntinuation bonds at <b>both</b> ends;                                                                                                                                                                                                                                                                         | [1]<br>[1] |    |      | (ii)        | fo<br>cr<br>(n<br>re<br>di |
| (e)   | if C<br>if 1<br>in a<br>of (<br>2C<br>ace | $f_{10}$ is given award 3 marks;;;<br>$f_{10}H_{20}$ is given award 2 marks;;<br>:7.5:5 / 2:15:10 is given award 2 marks;;<br>all other cases a mark can be awarded for moles of O <sub>2</sub> (= 2.4/32 =) 0.075 <b>AND</b> moles<br>$CO_2$ (= 2.2/44 =) 0.05;<br>$f_{10} + 15O_2 \rightarrow 10CO_2 + 10H_2O$<br><b>cept:</b> multiples including fractions | [3]<br>[1] |    |      |             | re                         |
|       | allo                                      | ow: ecf for correct equation from any incorrect alkene                                                                                                                                                                                                                                                                                                         |            |    |      |             |                            |

| (a) | (i)   | correct -O- linkage;<br>correct unit and continuation -O-□- (minimum);                                                                                                                                                                                                                                                                                                                                    | [1]<br>[1] |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     | (ii)  | any name or correct formula of a (strong) acid / $H^{+}$ ;                                                                                                                                                                                                                                                                                                                                                | [1]        |
|     | (iii) | contain carbon hydrogen and oxygen /C, H and O;                                                                                                                                                                                                                                                                                                                                                           | [1]        |
| (b) | (i)   | glucose $\rightarrow$ ethanol + carbon dioxide                                                                                                                                                                                                                                                                                                                                                            | [1]        |
|     | (ii)  | yeast is catalyst / provides enzymes / speeds up reaction / too slow without yeast; yeast cells grow / multiply / reproduce / undergo budding / breed;                                                                                                                                                                                                                                                    | [1]<br>[1] |
|     | (iii) | heat or high temperature would kill yeast (cells) / heat or high temperature denature enzymes;<br>not: enzyme killed / denatures yeast<br>reduces rate of reaction / slows reaction / (yeast or enzyme) no longer catalyses /<br>catalyst / stops reaction / no more product;                                                                                                                             | [1]        |
| (c) | (i)   | would produce carbon dioxide or carboxylic or organic acids (if oxygen is present) prevent aerobic respiration / so products are not oxidised / anaerobic bacteria can't with oxygen;                                                                                                                                                                                                                     |            |
|     | (ii)  | fossil fuels have a reduced need / conserved / no need to import / will last long<br>cracking hydrocarbons to make methane no longer required;<br>(methane) is renewable / carbon neutral;<br>reduce pollution of water or sea / prevents visual pollution / prevents need for wa<br>disposal or accumulation ( <b>accept:</b> any methods of waste disposal) / so that waste<br>recycled; <b>any two</b> | aste       |

| Qu | esti | on 2                                     | 20                                                                                                                                                                                                                                                                                                                                                                      |            |  |
|----|------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| 7  | (a)  | pro<br>incr<br>red<br>red<br>sho         | rning<br>duces toxic gases / harmful to health<br>reases greenhouse gases / global warming<br>uces visual pollution / litter<br>uces risks to wildlife<br>ortage of landfill sites / reduces space needed in landfill sites / saves space<br>n-biodegradable / long time to rot / decompose / accumulates waste<br>ning source of energy / used to generate electricity |            |  |
|    |      | con<br>diffi<br>pro<br>red<br>qua<br>fou | serves petroleum / natural resources<br>icult to recycle / expensive / takes much energy<br>blems over sorting<br>uces need for landfill<br>ality of plastic is reduced each time it is recycled<br><i>r DIFFERENT valid points which are advantages or disadvantages of burning and/or</i><br><i>ycling</i>                                                            | [4]        |  |
|    | (b)  | (i)                                      | addition (polymerisation);                                                                                                                                                                                                                                                                                                                                              | [1]        |  |
|    |      |                                          | (polymer) only product / no by-products;                                                                                                                                                                                                                                                                                                                                | [1]        |  |
|    |      |                                          | condensation (polymerisation);                                                                                                                                                                                                                                                                                                                                          | [1]        |  |
|    |      |                                          | (polymer and) simple molecule / water / hydrogen chloride / one other product forms;                                                                                                                                                                                                                                                                                    | [1]        |  |
|    |      | (ii)                                     | a correct linkage (for a polyamide / polyester);<br>two different monomers;                                                                                                                                                                                                                                                                                             | [1]<br>[1] |  |

6

| iestio | on 2  | 21                                                                                                                                            |                   |
|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (a)    |       | sm <sup>3</sup> ;<br>sm <sup>3</sup> ;                                                                                                        | [1]<br>[1]        |
| (b)    | (i)   | chlorination / substitution / photochemical / exothermic / halogenation / free radio                                                          | cal; [1]          |
|        | (ii)  | (compounds) same molecular formula; different structural formulae;                                                                            | [2]               |
|        | (iii) | $CH_3-CH_2-CH_2-CH_2-ClCH_3-CH_2-CH(Cl)-CH_3$                                                                                                 | [1]<br>[1]        |
| (c)    | (i)   | potassium manganate(VII) / potassium dichromate(VI) / copper(II) oxide; note: do not insist on oxidation numbers but if given must be correct | [1]               |
|        | (ii)  | butanoic acid;                                                                                                                                | [1]               |
|        | (iii) | butyl ethanoate;                                                                                                                              | [1]               |
|        |       | correct formula all bonds shown = [2]<br>if alkyl groups incorrect then correct ester linkage showing bonds = [1]                             | [2]<br>Fotal: 12] |

| ( | b) (i | ) correct structural or displayed formula of another chlorobutane / dichlorobuta<br>polychlorobutane                                             | ane /<br>[1] |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|   | (ii   | ) light / 200 °C / lead tetraethyl                                                                                                               | [1]          |
|   | (iii  | ) cracking is the decomposition/breaking down of an alkane/hydrocarbon/petroleum<br>heat/high temperature / Temperature between 450 °C to 800 °C | [1]          |
|   |       | OR catalyst / named catalyst<br>to give a simpler alkane and alkene                                                                              | [1]<br>[1]   |
|   |       | word equation or equation as example                                                                                                             | [1]          |
|   |       | to make polymers / to increase petrol fraction / organic chemicals/petrochemic<br>hydrogen<br>any <b>four</b>                                    | als /<br>[1] |



| ester                                                                                                                                                                                                                                                                                                                             | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| soap/sodium stearate or any acceptable salt/glycerol                                                                                                                                                                                                                                                                              | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| burning both fuels forms carbon                                                                                                                                                                                                                                                                                                   | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| growing plants to make biodiesel removes carbon dioxide from atmosphere                                                                                                                                                                                                                                                           | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| correct SF of an octane                                                                                                                                                                                                                                                                                                           | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| add bromine (water)/bromine in an organic solvent<br>result octane remains brown/orange/yellow/red<br>result octane goes colourless/decolourises<br><b>not</b> clear/discolours<br>colour of reagent must be shown somewhere for [3] otherwise max [2]<br><b>accept</b> equivalent test using KMnO <sub>4</sub> in acid or alkali | [1]<br>[1]<br>[1]                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                   | soap/sodium stearate or any acceptable salt/glycerol<br>burning both fuels forms carbon<br>growing plants to make biodiesel removes carbon dioxide<br>from atmosphere<br>correct SF of an octane<br>add bromine (water)/bromine in an organic solvent<br>result octane remains brown/orange/yellow/red<br>result octane goes colourless/decolourises<br><b>not</b> clear/discolours<br>colour of reagent must be shown somewhere for [3] otherwise max [2] |

## Question 25

6

| (a) | (i)   | cracking / heat with catalyst<br>to make butane<br>butene reacts with steam/water / hydrated<br><b>accept</b> heat and catalyst for cracking but if specified: 450 to 800°C zeolite<br>aluminosilicates / silica / aluminium oxide/alumina / china / broken pot / porcela<br>chromium oxide |            |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     | (ii)  | glucose / sugar changed to alcohol / ethanol                                                                                                                                                                                                                                                | [2]        |
|     |       | accept an unbalanced equation<br>(catalysed by) enzymes / yeast                                                                                                                                                                                                                             | [1]        |
| (b) | CH    | anoic acid<br><sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -COOH<br>Irogen atoms omitted from ends of bonds, penalise once                                                                                                                                                                | [1]<br>[1] |
| (c) | (i)   | ester                                                                                                                                                                                                                                                                                       | [1]        |
| V   | (ii)  | $C_6H_{12}O_2$<br>ignore $CH_3COOC_4H_9$                                                                                                                                                                                                                                                    | [1]        |
|     | (iii) | correct structural formula of butyl ethanoate showing all bonds                                                                                                                                                                                                                             | [2]        |
|     |       |                                                                                                                                                                                                                                                                                             |            |

| (a) | addition – polymer only product / only one product<br>accept monomer has C=C<br>accept monomer and polymer have same empirical formula<br>accept no loss of material in polymerisation<br>not only one monomer | [1]               |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|     | condensation – polymer and water / small molecule formed                                                                                                                                                       | [1]               |
| (b) | -CH <sub>2</sub> – CC <i>l</i> <sub>2</sub> -<br>repeat unit correct<br><b>COND</b> continuation                                                                                                               | [1]<br>[1]        |
| (c) | CH <sub>2</sub> =CHOOCCH <sub>3</sub>                                                                                                                                                                          | [1]               |
| (d) | -OC(CH <sub>2</sub> ) <sub>4</sub> CONH(CH <sub>2</sub> ) <sub>6</sub> NH-<br>COND amide correct linkage<br>correct repeat units<br>continuation<br>not NH <sub>2</sub> or COOH endings                        | [1]<br>[1]<br>[1] |

4

| (a | ) (i)              | same molecular formula / same number of C and H atoms<br>different structural formula or structure<br>same compound = [1]                      | [1]<br>[1]        |
|----|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|    | (ii)               | correct formula of but-2-ene / methylpropene / methyl cyclopropane                                                                             | [1]               |
|    | (iii)              | bromine / bromine water / aqueous bromine<br>brown to colourless <b>not</b> clear<br>stays brown<br>brom <b>ide</b> loses the first mark only  | [1]<br>[1]<br>[1] |
|    |                    | <b>OR</b> alkaline potassium manganate(VII)<br>from purple/pink to green/brown<br>stays purple                                                 | [1]<br>[1]<br>[1] |
|    |                    | <b>OR</b> acidic potassium manganate(VII)<br>from purple/pink to colourless <b>not</b> clear<br>stays purple                                   | [1]<br>[1]<br>[1] |
| (b |                    | at / high temperature (temperature need not be stated, but if it is stated it must be<br>0°C or above)                                         | [1]               |
|    | zec                | alyst (need not be named, but if they are named accept any metal oxide or<br>plite / aluminosillicates / silicon dioxide)<br>t nickel/platinum | [1]               |
| (c | if n<br>but<br>but | 2)dibromobutane<br>umbers given must be correct<br>ane<br>anol<br>cept butan-1-ol or butan-2-ol <b>not</b> but-1-ol / but-1-anol / buthanol    | [1]<br>[1]<br>[1] |

#### Question 27 2 (a) (i) enzymes are proteins / come from living organisms / biological (catalysts) [1] not enzymes are living or natural (ii) carbohydrates have 2H:10 ratio [1] [1] contain elements of water contain water = [1] unless they state that carbohydrates contain water, this response scores 2 or 0 (b) correct -O- linkage [1] cond same correct monomer (this mark is lost if 2 different boxes are shown) [1] cond continuation (i.e. bonds at both ends) [1] (c) (i) (concentration or amount or mass etc.) of starch decreases (with time) (concentration etc.) of starch becomes zero / all starch gone colour (intensity) indicates how much starch is present (can be inferred) [1] [1] [1] (ii) enzyme denatured / destroyed [1] not enzymes killed / don't work / saliva denatured

| Question 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Question 29                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>8 (a) biodegradable or breaks down naturally made from a renewable source or does not use up petroleum</li> <li>reduce visual pollution or reduces need for landfill sites or less danger to wildlife any TWO [2] ignore mention of toxic gases</li> </ul>                                                                                                                                                                                                                                                                               | (b) (i) fats or lipids       [1]         (ii) -O- linkage, no other atoms in linkage       [1]         COND same monomer       [1]         COND continuation bonds at each end -A-       [1]         (iii) same linkage or amide linkage or peptide or -CONH-       [1]                                                                                                                                                                                                 |
| (b) (i) ester accept polyester or fat or lipid or vegetable oil or carboxylic acid       [1]         (ii) acid or carboxylic acid or alkanoic acid alcohol or hydroxyl or alkanol NOT formulae NOT hydroxide       [1]         (iii) condensation condensation or monomer does not have C=C bond       [1]                                                                                                                                                                                                                                        | differences         synthetic polyamide usually two monomers         protein many monomers         protein monomers are amino acids or proteins hydrolyse to amino acids or a protein         monomer has one – NH <sub>2</sub> and one –COOH group         synthetic polyamide each monomer has 2 –NH <sub>2</sub> or 2COOH groups or monomers are         dioic acid and diamine         accept diagrams or comments that are equivalent to the above         ANY TWO |
| <ul> <li>(c) (i) lactic acid → acrylic acid + water [1]</li> <li>(ii) add bromine (water) or bromine in an organic solvent [1]<br/>remains brown/orange/yellow [1]<br/>goes colourless NOT clear [1]</li> <li>If mark 1 near miss e.g. bromide allow marks 2 and 3<br/>Colour of reagent must be shown somewhere for [3] otherwise max [2]</li> <li>OR acidified potassium manganate(VII)<br/>purple/pink to colourless</li> <li>OR alkaline potassium manganate(VII)<br/>purple/pink to green<br/>or purple/pink to brown precipitate</li> </ul> | Question 30       [1]         (c) (i) biological catalyst accept protein catalyst       [1]         (ii) production of energy (from food) by living "things" or by cells, etc.       [1]         (iii) "kill" yeast or denature enzymes (due to increase in temperature)       [1]         (iv) all <u>glucose</u> used up yeast "killed" or denatured or damaged by ethanol/alcohol       [1]                                                                          |

(v) filter or centrifuge fractional distillation [1] [1]

| 31                                                                                                                                                                                  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Question 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tanol [1<br>number needed but if one is given it has to be 1                                                                                                                        | 1] 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | coal or coke or peat<br>NOT wood or charcoal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| uctural formula (all bonds shown) [1<br>cept –OH <b>NOT</b> –HO                                                                                                                     | 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | natural gas <b>or</b> methane <b>or</b> propane <b>or</b> butane <b>or</b> petroleum gases <b>or</b> calor gas<br>refinery gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nanoic acid [1<br>uctural formula (all bonds shown) [1<br>cept –OH <b>NOT</b> –HO<br>conseq marking<br>all bonds are not shown ( CH <sub>3</sub> –CH <sub>2</sub> –), penalise once | 1]<br>1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F<br>C<br>a<br>f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | betrol <b>or</b> gasoline<br>baraffin <b>or</b> kerosene<br>diesel<br>aviation fuel <b>or</b> jet fuel<br>uel oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>COND</b> continuation and a group on either side of the ester group [1                                                                                                           | 1]<br>1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | neavy fuel oil<br>neating oil<br>Any <b>TWO</b><br>NOT a named alkane e.g. octane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Accept –COO–<br>accept any sensible suggestion<br>ropes, clothing, bottles, packaging, bags [1                                                                                      | 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | waxes <b>or</b> grease <b>or</b> lubricants <b>or</b> polishes <b>or</b> bitumen (tar, asphalt) <b>or</b> naphtha<br>Any <b>TWO</b> from the primary or secondary distillation of petroleum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8 [1                                                                                                                                                                                | 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (iii) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | liquid) air or ethanol and water or alkenes (made by cracking) or Noble Ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| double bond becomes single and 4 bonds per carbon atom                                                                                                                              | 1] —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| corn oil [1                                                                                                                                                                         | 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| hit 762 x 2<br>e mole of fat reacts with 762/254 moles of iodine molecules                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| nit 6                                                                                                                                                                               | 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                     | 4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                     | tanol       [         number needed but if one is given it has to be 1       [         uctural formula (all bonds shown)       [         cept -OH NOT -HO       [         ranoic acid       [         uctural formula (all bonds shown)       [         cept -OH NOT -HO       [         conseq marking       [         Il bonds are not shown ( CH3-CH2-), penalise once       [         must have correct ester linkage       [         COND continuation and a group on either side of the ester group       [         Accept -COO-       accept any sensible suggestion       [         ropes, clothing, bottles, packaging, bags       [       [         double bond becomes single and 4 bonds per carbon atom       [       [         COND a bromine atom on each carbon       [       [         C2HJBr2 ONLY [1]       accept a structural formula with hydrogen atoms       [         corn oil       [       [       [         Og of fat react with 86.2g of iodine       [       [         tit 762 x 2       e       e       [       [         e mole of fat reacts with 762/254 moles of iodine molecules       [       [         meter of double bonds in one molecule of fat is 3       [       [ <tr< td=""><td>tanol       [1]         number needed but if one is given it has to be 1       [1]         uctural formula (all bonds shown)       [1]         cept -OH NOT -HO       [1]         cutural formula (all bonds shown)       [1]         cept -OH NOT -HO       [1]         conseq marking       [1]         ill bonds are not shown ( CH<sub>3</sub>-CH<sub>2</sub>-), penalise once       [1]         must have correct ester linkage       [1]         COND continuation and a group on either side of the ester group       [1]         Accept -COO-       accept any sensible suggestion         ropes, clothing, bottles, packaging, bags       [1]         8       [1]         double bond becomes single and 4 bonds per carbon atom       [1]         CND a bromine atom on each carbon       [1]         CARD a bromine atom on each carbon       [1]         CALDD a bromine atom on each carbon       [1]         Qo of fat react with 86.2g of iodine       [1]         it 762 x 2       it 762 x 2         e mole of fat reacts with 762/254 moles of iodine molecules       [1]         mber of double bonds in one molecule of fat is 3       [1]</td><td>tanol       [1]       1       (a) (i) c         number needed but if one is given it has to be 1       [1]       (i) (i) (i)         uctural formula (all bonds shown)       [1]       (ii)       (ii)         cept -OH NOT -HO       [1]       (b) (i)       (i)         nanoic acid       [1]       (b) (i)       (i)         uctural formula (all bonds shown)       [1]       (b) (i)       (i)         cept -OH NOT -HO       (Conseq marking)       [1]       (b) (i)       (i)         must have correct ester linkage       [1]       [1]       (ii)       (iii)         COND continuation and a group on either side of the ester group       [1]       (ii)       (iii)         Accept -COO-       [1]       (iii)       (iii)       (iii)         accept any sensible suggestion       [1]       (iii)       (iii)       (iiii)         8       [1]       [1]       (iii)       (iiii)       (iiii)         8       [1]       [1]       (iii)       (iiii)       (iii)         9       otheles one each carbon       [1]       [1]       (iii)       (iii)         8       [1]       accept a structural formula with hydrogen atoms       [1]       (i)       [1]     </td></tr<> | tanol       [1]         number needed but if one is given it has to be 1       [1]         uctural formula (all bonds shown)       [1]         cept -OH NOT -HO       [1]         cutural formula (all bonds shown)       [1]         cept -OH NOT -HO       [1]         conseq marking       [1]         ill bonds are not shown ( CH <sub>3</sub> -CH <sub>2</sub> -), penalise once       [1]         must have correct ester linkage       [1]         COND continuation and a group on either side of the ester group       [1]         Accept -COO-       accept any sensible suggestion         ropes, clothing, bottles, packaging, bags       [1]         8       [1]         double bond becomes single and 4 bonds per carbon atom       [1]         CND a bromine atom on each carbon       [1]         CARD a bromine atom on each carbon       [1]         CALDD a bromine atom on each carbon       [1]         Qo of fat react with 86.2g of iodine       [1]         it 762 x 2       it 762 x 2         e mole of fat reacts with 762/254 moles of iodine molecules       [1]         mber of double bonds in one molecule of fat is 3       [1] | tanol       [1]       1       (a) (i) c         number needed but if one is given it has to be 1       [1]       (i) (i) (i)         uctural formula (all bonds shown)       [1]       (ii)       (ii)         cept -OH NOT -HO       [1]       (b) (i)       (i)         nanoic acid       [1]       (b) (i)       (i)         uctural formula (all bonds shown)       [1]       (b) (i)       (i)         cept -OH NOT -HO       (Conseq marking)       [1]       (b) (i)       (i)         must have correct ester linkage       [1]       [1]       (ii)       (iii)         COND continuation and a group on either side of the ester group       [1]       (ii)       (iii)         Accept -COO-       [1]       (iii)       (iii)       (iii)         accept any sensible suggestion       [1]       (iii)       (iii)       (iiii)         8       [1]       [1]       (iii)       (iiii)       (iiii)         8       [1]       [1]       (iii)       (iiii)       (iii)         9       otheles one each carbon       [1]       [1]       (iii)       (iii)         8       [1]       accept a structural formula with hydrogen atoms       [1]       (i)       [1] |

| 7 | (a)                                                                                                                                                                                                                                              | (i)         | any correct equation                                                                                                  | [1]          |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------|--------------|--|
|   |                                                                                                                                                                                                                                                  | (ii)        | structural formulae from but-1-ene, but-2-ene, methylpropene<br>or cyclobutane Any <b>TWO</b>                         | [2]          |  |
|   | (b)                                                                                                                                                                                                                                              | (i)         | light <b>or</b> 200°C <b>or</b> lead tetraethyl                                                                       | [1]          |  |
|   |                                                                                                                                                                                                                                                  | (ii)        | substitution <b>or</b> photochemical <b>or</b> chlorination <b>or</b> free radical or halogenation                    | [1]          |  |
|   |                                                                                                                                                                                                                                                  | (iii)       | 1-chlorobutane, 2-chlorobutane, dichlorobutane etc.<br>Any <b>TWO</b>                                                 | [2]          |  |
|   | (c)                                                                                                                                                                                                                                              | (i)         | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH or CH <sub>3</sub> CH(OH)CH <sub>3</sub>                           | [1]          |  |
|   |                                                                                                                                                                                                                                                  | (ii)        | CH₃CH(Br)CH₂Br<br>NOT 1,3-dibromopropane                                                                              | [1]          |  |
|   | (d)                                                                                                                                                                                                                                              |             | es of $CH_3$ - $CH = CH_2$ reacted = 1.4/42 = 0.033                                                                   | [1]          |  |
|   |                                                                                                                                                                                                                                                  | max         | iseq<br>simum moles of CH <sub>3</sub> -CH(I)-CH <sub>3</sub> that could be formed = 0.033                            | [1]          |  |
|   |                                                                                                                                                                                                                                                  | max<br>acce | iseq<br>kimum mass of 2-iodopropane that could be formed = 5.61 g<br>ept 170 x 0.033 = 5.61 and 170 x 0.033333 = 5.67 | [1]          |  |
|   | conseq unless greater than 100%<br>percentage yield 4.0/5.67 x 100 = 70.5%<br>Do not mark consequently to a series of small integers. There has to be<br>a serious attempt to answer the question, then consequential marking is<br>appropriate. |             |                                                                                                                       |              |  |
|   |                                                                                                                                                                                                                                                  |             |                                                                                                                       | [TOTAL = 13] |  |

| (b) | corr  | rect structure as syllabus (box representation)<br>rect linkageO<br>tinuation                                                                                                                                                                                                             | [1]<br>[1] |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (c) | (i)   | $C_6H_{12}O_6 = 2C_2H_5OH + 2CO_2$<br>not balanced [1]<br>Accept $C_2H_6O$                                                                                                                                                                                                                | [2]        |
|     | (ii)  | gives out <u>energy</u> <b>or</b> equivalent<br><b>NOT</b> heat<br>N.B. a total of [1] not [2]                                                                                                                                                                                            | [1]        |
|     | (iii) | glucose used up <b>or</b> yeast 'killed' by ethanol<br><b>NOT</b> yeast used up <b>NOT</b> reactant used up                                                                                                                                                                               | [1]        |
|     | (iv)  | oxidise alcohol to acid <b>or</b> to ethanoic acid<br><b>or</b> to carbon dioxide and water<br><b>or</b> if oxygen present aerobic respiration<br><b>or</b> cannot have anaerobic respiration in presence of oxygen<br><b>NOT</b> it is anaerobic respiration, must be additional comment | [1]        |
|     | (v)   | fractional distillation                                                                                                                                                                                                                                                                   | [1]        |

## Question 34

(iv) amide linkage [1] COND different monomers [1] Accept hydrocarbon part of chain as boxes If nylon 6 then only one monomer [1] NOT different monomers

| estic | on    | 35                                                                                                                                                                                           | (        | Quest | ion 36 |       |                                                                                                                                                                   |          |
|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|--------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (a)   | (i)   | CH <sub>3</sub> -CH==CH <sub>2</sub> [1                                                                                                                                                      | ]        | 6.    | (a)    | (i)   | correct repeat unit                                                                                                                                               | [1       |
|       | (ii)  | conseq to (i)<br>correct repeat unit [1<br>COND evidence of continuation [1]                                                                                                                 | ij       |       |        |       | COND evidence of polymer chain                                                                                                                                    | [1       |
|       | /     | •                                                                                                                                                                                            |          |       |        | (ii)  | glucose or maltose                                                                                                                                                | [1       |
|       | (111) | i) monomer       [1         COND because it has a double bond or unsaturated or alkene       [1         NOT addition       [1                                                                | ij       |       |        | (iii) | addition (polymerisation) or no other product except polymer                                                                                                      | [1       |
| (b)   | (i)   | to remove fibres <b>or</b> remove solid<br><b>NOT</b> precipitate, <b>NOT</b> impurities, <b>NOT</b> to obtain a filtrate [1                                                                 | IJ       |       |        | 4     | condensation (polymerisation) <b>or</b> polymer<br>and water                                                                                                      | [1       |
|       | (ii)  | because silver atoms have lost electrons       [1         OR oxidation number increased       [1                                                                                             | נו       |       | (b)    | (i)   | sodium hydroxide<br>COND ammonia or alkaline gas or litmus red to blue                                                                                            | [1<br>[1 |
|       | (iii  | i) silver chloride [1                                                                                                                                                                        | ]        |       |        |       | If aluminium added wc =0                                                                                                                                          |          |
| (c)   | (i)   | name of an ester [1<br>formula of an ester [1<br>if they do not correspond MAX [1]<br>Accept name - terylene                                                                                 | ]<br> ]  |       |        | (ii)  | measure pH<br>more than 1 and less than 7 or                                                                                                                      | I        |
|       |       | for formula ester linkage and continuation<br>If a 'fat' complete structure must be correct e.g. C <sub>17</sub> H <sub>35</sub> etc.<br>Mark for formula only - [1]                         |          |       |        |       | <ul> <li>correct colour eg orange or yellow NOT red</li> <li>NOT green</li> <li>OR add magnesium or calcium carbonate</li> <li>weak acid reacts slowly</li> </ul> |          |
|       | (ii)  | alcohol or alkanol [1<br>NOT a named alcohol                                                                                                                                                 |          |       | (c)    | (i)   | ethyl acrylate                                                                                                                                                    | ļ        |
| (d)   | (i)   | acid loses a proton [2<br>base accepts a proton [1]                                                                                                                                          | 2]<br> ] |       |        |       | ester or alkene                                                                                                                                                   |          |
|       |       | <b>OR</b> same explanation but acid loses a hydrogen <u>ion</u> (1)<br>and base gains hydrogen <u>ion</u> (1)                                                                                |          |       |        | (ii)  | brown to colourless (NOT clear)<br>correct formula for acid NOT ester                                                                                             | [        |
|       | (ii)  | only partially ionised <b>or</b> poor hydrogen ion donor <b>or</b> poor proton donor [1<br><b>NOT</b> does not form many hydrogen ions in water <b>or</b> low concentration of hydrogen ions | ]        |       |        |       |                                                                                                                                                                   |          |
|       |       | NOT pH                                                                                                                                                                                       |          |       |        |       |                                                                                                                                                                   |          |
|       |       | $\mathcal{N}\mathcal{O}$                                                                                                                                                                     |          |       |        |       |                                                                                                                                                                   |          |
|       |       |                                                                                                                                                                                              |          |       |        |       |                                                                                                                                                                   |          |
|       |       |                                                                                                                                                                                              |          |       |        |       |                                                                                                                                                                   |          |
|       |       |                                                                                                                                                                                              |          |       |        |       |                                                                                                                                                                   |          |

## **Ouestion 37**

#### **Ouestion 38**

| Question 37                                                                                 | Ques            | tion 38                                                                                    |            |
|---------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------|------------|
| 3 (a) (i) Correct equation                                                                  | [2] <b>6</b> (a | a) (i) heat (energy)                                                                       | [1]        |
| For giving correct formula of alkane and alkene [1] only<br>Accept alkene and hydrogen      |                 | (ii) exothermic                                                                            | [1]        |
| <ul> <li>(ii) chlorine</li> <li>COND light or 200°C or heat or lead tetraethyl</li> </ul>   | [1]             | (iii) $C_2H_5OH + 3O_2 = 2CO_2 + 3H_2O_2$                                                  | [2]        |
| or high temperature MAX 1000°C                                                              | [1]             | For $CO_2 + H_2O$ ONLY [1]                                                                 |            |
| ignore comment 'catalyst'                                                                   |                 | (iv) plotting points correctly<br>straight line                                            | [1]        |
| (b) (i) <u>same molecular formula</u><br>different structures <b>or</b> structural formulae | [1]<br>[1]      | between –2640 and –2700kJ/mol                                                              | [1]<br>[1] |
| (ii) but- <u>2</u> -ene or cyclobutane                                                      | [1]             | NOTE minus sign needed                                                                     |            |
| corresponding structural formula NOT 2-butene                                               | [1]             | (v) general (molecular) formula                                                            |            |
|                                                                                             |                 | same functional group<br>consecutive members differ by CH <sub>2</sub>                     |            |
| (c) butanol ignore numbers<br>butane ignore numbers                                         | [1]<br>[1]      | similar chemical properties or react same way                                              |            |
| dibromobutane ignore numbers                                                                | [1]             | NOT a comment about physical properties ANY TWO                                            | [2]        |
|                                                                                             |                 |                                                                                            |            |
| (d) (i) propene                                                                             | [1] (t          |                                                                                            | [1]        |
| $CH_3$ — $CH==CH_2$                                                                         | [1]             | NOT C₃H7OH<br>propan-2-ol "2" is needed                                                    | [1]        |
| (ii) Correct structure of repeat unit                                                       | [4]             | NOTE the name and the formula must correspond for both marks                               |            |
| (ii) Correct structure of repeat unit<br>ignore point of attachment of ester group          | [1]             | accept full structural formula – all bonds shown correctly<br>accept formulae of the ether |            |
| COND upon repeat unit                                                                       | [4]             | NOT CH <sub>3</sub> - CH(HO)-CH <sub>3</sub>                                               |            |
| shows continuation<br>If chain through ester group [0] out of [2]                           | [1]             |                                                                                            |            |
| (iii) do not decay or non-biodegradable                                                     |                 |                                                                                            |            |
| shortage of sites or amount of waste per year visual pollution                              |                 |                                                                                            |            |
| forms methane                                                                               | <b>F</b> (1)    |                                                                                            |            |
| Any TWO<br>(iv) form poisonous or toxic gases or named gas CO, HC <i>l</i> HCN              | [2]<br>[1]      |                                                                                            |            |
| NOT carbon dioxide, harmful, sulphur dioxide                                                | L-3             |                                                                                            |            |

•

~'

| (c) (i) | heat (alkane) <b>or</b> (alkane) and catalyst<br><b>NOTE</b> thermal cracking or catalytic cracking [2]              |                                  |                    | Question 39 |              |                                                                                                              |              |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------|--------------|--|--|
|         |                                                                                                                      |                                  |                    | 8 (a)       | (i)          | biological catalyst                                                                                          | [1]          |  |  |
|         | alkane = alkene + hydrogen ANY TWO                                                                                   |                                  |                    |             | (ii)         | linkageO<br>same unit as in glucose as on question paper that is rectangles                                  | [1]          |  |  |
|         | <b>OR</b> steam reforming<br>$CH_4 + H_2O = CO + 3H_2$<br><b>or</b> water/steam<br>catalyst <b>or</b> heat           | [2]<br>[1]<br>[1]                |                    | (b)         | (iii)<br>(i) | chromatography<br>NHCO—linkage<br>different units                                                            | [1]          |  |  |
| (ii)    | 0                                                                                                                    |                                  | [1]                |             |              | -NH and -CO on same monomer unit<br>All three [2] two points [1]                                             | [2]          |  |  |
|         | incomplete or insufficient oxygen/air<br>OR ACCEPT steam reforming as above                                          | [2]                              | [1]                |             | (ii)         | amino acids                                                                                                  | [1]          |  |  |
| (iii)   | high pressure<br>COND forward reaction volume decrease                                                               |                                  | [1]                | (c)         | (i)          | propanol + ethanoic acid = propyl ethanoate + water<br>reactants [1] products [1]                            | [2]          |  |  |
|         | or volume of reactants greater than that of<br>or fewer moles of gas on the right<br>or fewer gas molecules on right | f products                       | [1]                |             | (ii)         | ester linkage correct<br>rest of molecule correct                                                            | [1]<br>[1]   |  |  |
|         | NOTE accept correct arguments about eith                                                                             | ner reactants <b>or</b> products |                    |             | (iiii)       | bromine water<br>fat 1 orange or yellow or brown to colourless<br>fat 2 remains orange or yellow or brown    | [1]<br>[1]   |  |  |
| (d) (i) | methyl ethanoate                                                                                                     |                                  | [1]                |             |              | fat 2 remains orange or yellow or brown<br>Accept Potassium Manganate(VII) with corresponding colour changes | [1]          |  |  |
| (ii)    | propanoic acid <b>or</b> propanal                                                                                    |                                  | [1]                |             | (iv)         | soap or sodium salts (of carboxylic acids)/sodium stearate<br>alcohol/glycerol                               | [1]<br>[1]   |  |  |
| (iii)   | ethene                                                                                                               |                                  | [1]<br>[Total: 20] |             |              |                                                                                                              | [TOTAL = 15] |  |  |
|         |                                                                                                                      |                                  | $\frown$           |             |              |                                                                                                              |              |  |  |

| Questi           | on 40                                                                                                                                           |            | Question 4 | 42                                                                                                                                  |            |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------------------------------------------------------------------------------------------------------------------------------|------------|
| Questi<br>(a)(i) | on 4<br>general molecular formula                                                                                                               |            | 8 (a) (i)  | C <sub>6</sub> H <sub>12</sub><br>between 60 to 65°C                                                                                | [1]<br>[1] |
| (-//-/           | same functional group<br>physical properties show trend — bp increase with n<br>same chemical properties                                        |            | (ii)       | C <sub>12</sub> H <sub>24</sub><br>COND giving some indication of the method                                                        | [1]<br>[1] |
|                  | common methods of preparation<br>any <b>TWO</b>                                                                                                 | [2]        | (b)        | add bromine water <b>or</b> potassium manganate(VII)<br>butene it goes from brown/orange/yellow to colourless                       | [1]        |
| (ii)             | C <sub>8</sub> H <sub>17</sub> OH Mass of one mole = 130 (g)<br>if formula correct but mass wrong <b>[1]</b>                                    | [2]        |            | or manganate (VII) from pink to colourless<br>NOT clear<br>Cyclobutane it remains brown/orange/yellow or manganate (VII) stays pink | [1]        |
| (b)              | propan-1-ol <b>or</b> propan-2-ol<br>corresponding structural formula<br>name and formula must correspond for <b>[2]</b> if not <b>ONLY [1]</b> | [1]<br>[1] |            | or no colour change<br>Accept does not react<br>Provided colour of reagent somewhere in the answer [3] is possible                  | [1]        |
| (c)(i)           | structural formula of isomer                                                                                                                    | [1]        | (c) (i)    | alcohol                                                                                                                             | [1]        |
| (ii)             | carbon dioxide <u>and</u> water<br>pentene                                                                                                      | [1]<br>[1] | (ii)       | CH <sub>3</sub> -CH <sub>2</sub> -CHC <i>l</i> -CH <sub>3</sub>                                                                     | [1]        |
|                  | pentanoic acid                                                                                                                                  | [1]        | (iii)      | -CH(CH <sub>3</sub> )-CH(CH <sub>3</sub> )-                                                                                         | [2]        |
|                  |                                                                                                                                                 | TOTAL = 10 |            | or any equivalent diagram<br>[1] for repeat unit and [1] for continuation                                                           |            |

TOTAL - 44

| Qu | estic | on 41                                                                                                                                                                                                                  |     |
|----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (  | b)(i) | calcium ethanoate + hydrogen                                                                                                                                                                                           | [1] |
|    | (ii)  | zinc oxide <b>or</b> hydroxide                                                                                                                                                                                         | [1] |
| (  | c)    | $\label{eq:COOM} \begin{array}{l} CH_3COOH + NaOH \rightleftharpoons CH_3COONa + H_2O \\ \\ reactants \end{tabular} \end{tabular} \end{tabular} \end{tabular} \mathbf{f1} \qquad products \end{tabular} \end{tabular}$ | [2] |

| estion 4 |                                                                                                                                                                                                                                                                                                             |             | Que | stion        |                                                                             |            |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|--------------|-----------------------------------------------------------------------------|------------|
|          | correct structure<br>$CH_2=CCl_2$                                                                                                                                                                                                                                                                           | [1]         | 4   | (a)          | in which something dissolves correct formula                                | [1]<br>[1] |
| (ii)     | because it has a lower $M_r$ or density or its molecules move faster<br>it is lighter ONLY [1]<br>only comment - smaller molecules [0]<br>answer implies or states sieve idea then [0]                                                                                                                      | [2]         |     |              | CH <sub>3</sub> COOC <sub>2</sub> H <sub>5</sub> or full structural formula |            |
| (b) (i)  | ester linkage                                                                                                                                                                                                                                                                                               | [1]         |     |              |                                                                             |            |
|          | COND polymer chain showing different monomers and continuation<br>-OOC-C <sub>6</sub> H <sub>4</sub> -COOCH <sub>2</sub> CH <sub>2</sub> O-                                                                                                                                                                 | [1]         |     |              |                                                                             |            |
| (ii)     | fats <b>or</b> lipids                                                                                                                                                                                                                                                                                       | [1]         |     | $\mathbf{N}$ |                                                                             |            |
| (iii)    | does not decompose easily when heated accept similar statements                                                                                                                                                                                                                                             | [1]         | 1   |              |                                                                             |            |
| (c) (i)  | does not decompose <b>or</b> non-biodegradable shortage of landfill sites <b>or</b> of space visual pollution poisonous/toxic/harmful gases when <u>burnt</u><br><b>NOT</b> carbon monoxide, sulphur dioxide. If gas named has to be a correct one eg HC <i>l</i> , HCN dangerous to animals Any <b>TWO</b> | [2]         |     |              |                                                                             |            |
| (ii)     | conserve petroleum or save energy<br>NOT cheaper TOTAL                                                                                                                                                                                                                                                      | [1]<br>= 10 |     |              |                                                                             |            |
| estion 4 | 4                                                                                                                                                                                                                                                                                                           |             |     |              |                                                                             |            |
| (b) (i)  | $CO_2$ and $H_2O$<br>balanced<br>$2CH_3OH + 3O_2 = 2CO_2 + 4H_2O$                                                                                                                                                                                                                                           | [1]<br>[1]  |     |              |                                                                             |            |
| (ii)     | methyl ethanoate<br>water                                                                                                                                                                                                                                                                                   | [1]<br>[1]  |     |              |                                                                             |            |
| (iii)    | Methanoic (acid) accept formic acid                                                                                                                                                                                                                                                                         | [1]         |     |              |                                                                             |            |
|          |                                                                                                                                                                                                                                                                                                             |             |     |              |                                                                             |            |

# $NOT C_4H_8O_2$

|     | (111)        | steam or water or hydration<br>heat or catalyst                                                                 |           | [1] $[1]$                |
|-----|--------------|-----------------------------------------------------------------------------------------------------------------|-----------|--------------------------|
|     |              | <b>OR</b> bubble into (concentrated) sulphuric acid add water                                                   |           | [1]<br>[1]               |
|     |              | oxidised<br>by air or dichromate or manganate(VII)                                                              |           | [1]<br>[1]               |
|     | (iv)         | ethanoic acid and butanol                                                                                       |           | [1]                      |
| (b) | (i)          | CH <sub>2</sub> OH<br>CHOH<br>CH <sub>2</sub> OH                                                                |           | [1]                      |
|     | (ii)         | soap or detergent                                                                                               |           | [1]                      |
| (c) | (i)          | polyester or condensation polymer NOT terylene                                                                  |           | [1]                      |
|     | (ii)         | ноос – – –соон                                                                                                  | X         | [1]                      |
|     |              | но                                                                                                              |           | [1]                      |
|     | rong<br>impo | way around [1] Point of attachment of functional grant                                                          | oup to "l | box"                     |
| (d) |              | protein or poly peptide or polyamide<br>peptide or amide<br>amino acids are colourless or become visible/colour | ed        | [1]<br>[1]               |
|     | (iv)         | or to develop it<br>using colour or from position<br>OR discussion of Rf<br>OR compare with known amino acids   | ONLY      | [1]<br>[1]<br>[2]<br>[2] |
| TO  | ΓAL          |                                                                                                                 |           | [-]                      |

#### Question 46 (ii) measure rate in different light levels and comment [1] accept if dark no reaction (c) (i) $+6O_2$ [2] not balanced that is just O2 ONLY [1] (ii) linkage ---O----[1] chain [1] minimum to be accepted

[1] Question 47

5

[1]

| (a) |      | molecular formula<br>Must be able to give isomers, need not be alkenes<br>two <u>corresponding</u> isomers<br>If do not correspond then MAX [2] out of [3] | [1]<br>[2] |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (b) | (i)  | ethanol<br>structure                                                                                                                                       | [1]<br>[1] |
|     | (ii) | ethane<br>structure                                                                                                                                        | [1]<br>[1] |
| (c) | (i)  | many simple molecules or monomers<br>form one large one or macromolecule or chain                                                                          | [1]<br>[1] |

|       | (ii)  | addition polymer only one product- the polymer<br>condensation - polymer and water etc | [1]<br>[1] |
|-------|-------|----------------------------------------------------------------------------------------|------------|
|       | (iii) | correct unit<br>COND evidence of polymer in structure eg shows                         | [1]        |
|       |       | continuation such as terminal bonds                                                    | [1]        |
|       | (2)   | water proof or impervious or flexible or                                               |            |
| (d)   | (i)   | good adhesion or non-biodegradable or unreactive                                       | [1]        |
|       | (ii)  | steel in contact with water or air                                                     | [1]        |
|       | (iii) | zinc more reactive                                                                     |            |
|       |       | oxygen /water reacts with zinc not iron                                                |            |
|       |       | sacrificial protection                                                                 |            |
|       |       | zinc anodic<br>steel receives electrons from zinc                                      |            |
|       |       | zinc forms cations                                                                     |            |
|       |       | cell                                                                                   |            |
|       |       | TWO valid points                                                                       | [3]        |
| TOTAL | = 1   | 7                                                                                      |            |

8

| ac5th |                                                                                                                                                                                                                                                                                                                      |                   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (a)   | same general formula<br>same chemical properties<br>same functional group<br>physical properties vary in predictable way<br>common methods of preparation<br>consecutive members differ by CH <sub>2</sub><br>any two<br>mark first two<br>ignore others unless it contradicts a point which has been awarded a mark | [2]               |
| (b)   | (i) $2\text{HCOOH} + \text{CaCO}_3 \Rightarrow \text{Ca}(\text{HCOO})_2 + \text{CO}_2 + \text{H}_2\text{O}$<br>not balanced = [1]                                                                                                                                                                                    | [2]               |
|       | <ul> <li>(ii) zinc + methanoic acid → zinc methanoate + hydrogen</li> <li>[1] for each product</li> </ul>                                                                                                                                                                                                            | [2]               |
|       | (iii) protected by <u>oxide</u> layer                                                                                                                                                                                                                                                                                | [1]               |
| (c)   | butanoic acid $CH_{3}-CH_{2}-CH_{2}-COOH / C_{4}H_{8}O_{2} / C_{3}H_{7}COOH / C_{4}H_{7}OOH \\ C_{2}H_{4}O \\ mark \ ecf \ to \ molecular \ formula$                                                                                                                                                                 | [1]<br>[1]<br>[1] |

| 4   | (a)   | (i)   | ethanol<br>CH <sub>3</sub> -CH <sub>2</sub> -OH                                                                                                      | [1]<br>[1]        | 6   |
|-----|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|
|     |       |       | propanoic acid<br>$CH_3$ - $CH_2$ - $COOH$<br>independent marking, no ecf<br>accept $C_2H_5$<br>not – HO                                             | [1]<br>[1]        |     |
|     |       | (ii)  | type of compound - salt / sodium carboxylate / alkanoate                                                                                             | [1]               |     |
|     |       |       | not soap / sodium stearate etc<br>use – soap / cleaning / detergent                                                                                  | [1]               |     |
|     |       | (iii) | terylene / PET / Dacron / diolen / mylar / crimplene                                                                                                 | [1]               |     |
|     | (b)   | (i)   | polyamide / amide / peptide / polypeptide                                                                                                            | [1]               |     |
|     |       | (ii)  | correct amide linkage <u>NHCO then CONH</u><br>cond to mark 1, 2 monomers (different shading in box)<br>cond continuation (to ONE correct linkage)   | [1]<br>[1]<br>[1] |     |
|     |       |       | OR nylon 6<br>only one linkage – NHCO<br>cond only one monomer<br>cond continuation (to correct linkage)                                             | [1]<br>[1]<br>[1] |     |
|     |       | (;;;) | use locating agent                                                                                                                                   | [1]               |     |
|     |       | (,    | measure distance travelled by sample / travelled by solvent front<br>cond this is $R_f = 0.5$<br>for mark 3, either mark 1 or mark 2 must be awarded | (1)<br>(1)<br>(1) |     |
|     |       |       |                                                                                                                                                      |                   | ) ( |
|     |       |       | accept run a chromatogram of glycine [1]<br>compare with sample<br>same position [1] max [2]                                                         |                   |     |
|     |       |       |                                                                                                                                                      | -                 |     |
| _   |       | _     |                                                                                                                                                      |                   |     |
| Jue | estic | on 5  |                                                                                                                                                      |                   |     |

| (a) (i) C and H <u>only</u> (1)                                                                                                                                                          | [1]         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| (ii) only single bonds (1)                                                                                                                                                               | [1]         |
| (b) (i) $C_n H_{2n+2}$ (1)                                                                                                                                                               | [1]         |
| (ii) $C_{14}H_{30}(1)$<br>(14 × 12) + 30 = 198 (g)(1)                                                                                                                                    | [2]         |
| (c) (i) $C_9H_{20}$ + 14 $O_2 \rightarrow 9CO_2$ + 10 $H_2O$ (2)                                                                                                                         | [2]         |
| (ii) Volume ratio<br>$C_xH_y(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$<br>20 160 100 all in<br>1 8 5 mole<br>$C_8H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$<br>For evidence of method (1) |             |
| for equation as above (2)                                                                                                                                                                | [3]         |
| (d) (i) alkanes in petrol/fuel/solvent (1)<br>alkenes hydrogen to make alcohols/plastics/polymers/solvents<br>to make ammonia/fuel/fuel cells, etc. (1)                                  | (1) [3]     |
| (ii) a correct equation for example:<br>$C_{10}H_{22} \rightarrow C_8H_{16} + C_2H_4 + H_2 (1)$                                                                                          | [1]         |
| (e) (i) light or lead tetraethyl/catalyst/high temperature (1)                                                                                                                           | [1]         |
| (ii) CH <sub>3</sub> -CHCI-CH <sub>3</sub> (1)                                                                                                                                           | [1]         |
|                                                                                                                                                                                          | [Total: 16] |

# Question 50

| (iii) | chlorine                                                                 |
|-------|--------------------------------------------------------------------------|
|       | not chlorine water                                                       |
|       |                                                                          |
|       | cond light / UV / heat / high temperature if numerical value given about |
|       | 200°C / lead tetraethyl                                                  |
|       | not warm                                                                 |
|       | not waim                                                                 |

#### Question 52

[1]

[1]

(b) correct linkage (1)
 rest of molecule correct and continuation shown (1)
 (other product is) water (1)

[3]

| Question 53                                                                                                                                                                                                                                                                            | (iii) It (D) has strong (acid) and A has weak acid/(D) stronger/(D) ionises more/                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 (a) (i) butanoic/butyric acid (1)                                                                                                                                                                                                                                                    | (D) dissociates more or <u>A</u> is weaker / <u>A</u> ionises less / <u>A</u> dissociates less (1)                                                       |
| $CH_{3}CH_{2}CH_{2}COOH/C_{2}H_{5}CH_{2}COOH (1) $ [2]                                                                                                                                                                                                                                 | It (D) has <u>higher concentration of hydrogen ions</u> or <u>A</u> has a <u>lower</u><br>concentration of hydrogen ions (1)                             |
| (ii) any three from:                                                                                                                                                                                                                                                                   | more collisions (in D) or fewer collisions in A (1) [3]                                                                                                  |
| (same) general formula (1)                                                                                                                                                                                                                                                             | [Total: 18]                                                                                                                                              |
| (consecutive members) differ by CH <sub>2</sub> (1)                                                                                                                                                                                                                                    |                                                                                                                                                          |
| same functional group (1)                                                                                                                                                                                                                                                              |                                                                                                                                                          |
| common methods of preparation (1)                                                                                                                                                                                                                                                      | Question 54                                                                                                                                              |
| physical properties vary in predictable manner/show trends/gradually<br>change<br>or example of a physical property variation i.e. melting point/boiling point/<br>volatility (1) [3]                                                                                                  | <ul> <li>2 (a) (i) substance/material/compound/element/mixture (burnt) to produce/release energy or heat (1)</li> <li>(ii) Any two from: coal</li> </ul> |
| (b) (i) displayed formula of propan-1-ol, all bonds shown separately (1) [1]                                                                                                                                                                                                           | coke<br>peat                                                                                                                                             |
| (ii) acidified (1)                                                                                                                                                                                                                                                                     | petroleum/ crude oil<br>refinery gas/LPG                                                                                                                 |
| potassium manganate( <u>VII</u> )/potassium permanganate/KMnO <sub>4</sub> or potassium<br>dichromate(VI)/K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> /potassium dichromate (1) [2]<br>(c) (i) zinc + propanoic acid $\rightarrow \underline{zinc  propanoate}$ (+ hydrogen) (1) [1] | gasoline/petrol<br>naptha<br>kerosene/paraffin<br>diesel (oil)/gas oil                                                                                   |
|                                                                                                                                                                                                                                                                                        | fuel oil<br>propane                                                                                                                                      |
| (ii) calcium oxide + propanoic acid $\rightarrow$ <u>calcium propanoate + water</u> (1) [1]                                                                                                                                                                                            | butane [2]                                                                                                                                               |
| (iii) LiOH + CH <sub>3</sub> CH <sub>2</sub> COOH $\rightarrow$ <u>CH<sub>3</sub>CH<sub>2</sub>COOLi + H<sub>2</sub>O</u> (1) [1]                                                                                                                                                      | (iii) wood/charcoal/animal dung/biomass/Uranium/U/plutonium/Pu (1) [1]                                                                                   |
| (d) (i) concentration (of acid in C) is less/halved or concentration of A is more/doubled. (1)       [2]         less collisions or more collisions in A (than in C) (1)       [2]                                                                                                     | (b) (i) any two from:<br>water/steam/water vapour/H <sub>2</sub> O (1)<br>carbon dioxide/CO <sub>2</sub> (1)<br>carbon monoxide/CO (1) [2]               |
| <ul> <li>(ii) (higher temperature in B particles/molecules/atoms) move faster/have<br/>more energy/more have E<sub>a</sub> or (particles/molecules/atoms) in <u>A</u> move<br/>slower/have less energy/less have E<sub>a</sub> (1)</li> </ul>                                          | <ul><li>(ii) any two from:</li><li>limited or finite resource/non-renewable/will run out/depleted (1)</li></ul>                                          |
| more collisions or less collisions $\underline{in A}$ (than in B) (1) [2]                                                                                                                                                                                                              | greenhouse effect/gas(es)/climate change/(cause) global warming (1)                                                                                      |
|                                                                                                                                                                                                                                                                                        | acid rain (1)                                                                                                                                            |
|                                                                                                                                                                                                                                                                                        | production of <u>poisonous/toxic</u> gases (1) [2]                                                                                                       |
|                                                                                                                                                                                                                                                                                        | [Total: 8]                                                                                                                                               |

| estion 55                                                                                                                                                                                                                                                                    | Question 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(a) (i) CH<sub>3</sub>-CH=CH-CH<sub>3</sub>(1)</li> <li>(ii) one correct amide linkage between two rectangles (1) correct sequencing of a second amide link and monomers (1) two correct amide links and rest of structure correct (including additional</li> </ul> | <ul> <li>[1] 7 (a) (i) CH<sub>3</sub>COOCH<sub>2</sub>CH<sub>3</sub> / CH<sub>3</sub>CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> / CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub> / C<sub>2</sub>H<sub>5</sub>OOCCH<sub>3</sub> / CH<sub>3</sub>CO<sub>2</sub>C<sub>2</sub>H<sub>5</sub> / C<sub>2</sub>H<sub>5</sub>OOCCH<sub>3</sub> / CH<sub>3</sub>CO<sub>2</sub>CH<sub>2</sub>OOCCH<sub>3</sub> not: OCO-linkage note: formulae can be displayed or semi-displayed note: penalise sticks (i.e. any missing atoms)</li> <li>(ii) butyl methanoate</li> </ul> |
| monomers if seen) and correct continuation bonds (1)                                                                                                                                                                                                                         | [3] (b) (i) fats / <u>vegetable</u> oils / triglycerides / lipids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                              | (ii) two correct ester linkages, e.g. $-OOC / -O_2C$ and $-COO / -CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                              | contents of the 'boxes' being $C_6H_4$ and $C_2H_4$ or $CH_2CH_2$ continuation bonds at $both$ ends                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (iii) protein <b>or</b> polypeptide <b>or</b> named protein (1)                                                                                                                                                                                                              | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (iv) addition: only the polymer or one product is formed (1)                                                                                                                                                                                                                 | Question 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul><li>(b) (i) does not break down or rot or decompose (1)</li></ul>                                                                                                                                                                                                        | [2] 5 (a) (i) does not decay or non-biodegradable or flexible or bend<br>or easily moulded or low density / light / lightweight or waterproof / insoluble in wat<br>does not corrode or durable                                                                                                                                                                                                                                                                                                                                                              |
| by microbes or fungi or bacteria or by living organisms (1)                                                                                                                                                                                                                  | [2] (ii) any two from:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul><li>(ii) Any three from:<br/>visual pollution (1)</li></ul>                                                                                                                                                                                                              | [3] hydrogen chloride<br>carbon monoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (shortage of) landfill sites (1)<br>danger to wildlife/animals (including at sea) (1)                                                                                                                                                                                        | (b) (i) CH <sub>3</sub> —CH = CH <sub>2</sub><br>note: can be fully or semi-displayed, C = C must be shown                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| toxic gases when burnt <b>or</b> greenhouse gases produced when burned (1)                                                                                                                                                                                                   | (ii) correct repeat unit<br>$-CH(C_6H_5)-CH_2-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (c) Any two from:<br>resistant to corrosion/unreactive to water/more durable (1)                                                                                                                                                                                             | [2] continuation shown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| lighter/less dense (1)<br>easier to manufacture/can be moulded (1)                                                                                                                                                                                                           | (c) glucose two products (polymer and water) / condensation (polymerisation) / (s<br>molecules removed                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| good insulator/keeps the water cold (1)                                                                                                                                                                                                                                      | phenylethene one product (polymer) / addition (polymerisation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                              | otal: 14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Questior     | า 58                                                                                                                                    |            | Questio |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------|---------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| (b) (i) C    | $C_8H_{18} \rightarrow 2C_4H_8 + H_2$                                                                                                   | [1]        | 6 (a)   | <ul> <li>measure melting point<br/>pure sample would melt at 135°</li> </ul> | NOT just heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [       |
| (ii) 2       | $2H^+ + 2e \rightarrow H_2$                                                                                                             | [2]        |         | OR impure would melt lower that                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L       |
|              | $\text{ or } 2\text{H}_3\text{O}^+ + 2\text{e} \rightarrow \text{H}_2 + 2\text{H}_2\text{O}$                                            |            | (       | ii) C <sub>3</sub> H <sub>4</sub> O <sub>4</sub>                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [       |
|              | <pre>iccept: -2e on right hand side accept: e<sup>-</sup> iote: not balanced = 1</pre>                                                  |            | (i      | ii) $C_2H_4O_2$ <b>OR</b> $CH_3COOH$                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ       |
|              |                                                                                                                                         |            |         | ethanoic <b>OR</b> acetic acid both marks are independent of e               | each other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
|              |                                                                                                                                         |            | (i      | v) ester                                                                     | NOT organic, covalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I       |
| Questior     | n 59                                                                                                                                    |            | (b)     | (i) malonic is a weaker acid/less dis                                        | acceleted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| 7 (a) (      | <ol> <li>a compound which contains carbon and hydrogen <u>only</u></li> </ol>                                                           | [1]        | (D)     | OR sulfuric acid is a stronger acid                                          | id/more dissociated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| (i           | <ul> <li>alkanes contain only C-C single bonds<br/>or they are saturated (hydrocarbons)</li> </ul>                                      |            |         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|              | or have the general formula $C_nH_{2n+2}$                                                                                               | [1]        |         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|              | alkenes contain at least one C=C double bond                                                                                            |            | (11)    | add piece of suitable metal, e.g. I                                          | Mg ALLOW A <i>l</i> , Ca NOT K, Na, Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
|              | or they are unsaturated (hydrocarbons)<br>or have the general formula C <sub>n</sub> H <sub>2n</sub>                                    | [1]        |         | sulfuric acid reacts faster OR ma                                            | lonic reacts slow <b>er</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
|              |                                                                                                                                         |            |         | OR                                                                           | if a shirk to a scheme star the set of the s |         |
| <b>(b)</b> C | $C_{20}H_{42} \rightarrow 2C_4H_8 + 2C_2H_4 + C_8H_{18}$                                                                                | [1]        |         | as above add a piece of $CaCO_3$ ,                                           | If soluble carbonate then [1] only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
|              |                                                                                                                                         |            |         | OR measure electrical conductivi<br>sulfuric acid is the better conduct      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| (c) (        | <ul> <li>any unambiguous structure of BrCH<sub>2</sub>CH<sub>2</sub>Br<br/>NOT just C<sub>2</sub>H<sub>4</sub>Br<sub>2</sub></li> </ul> | [1]        |         | OR malonic acid poorer conducto<br>NOT sulfuric acid is a good condu         | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| (i           | i) CH <sub>3</sub> -CH=CH-CH <sub>3</sub>                                                                                               | [2]        |         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| ţ.           | For any butene [1] only                                                                                                                 | [-]        | (c) (i) | sodium malonate <u>and</u> water                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| (ii          | i) $(CH_3-CH_2-CH=CH_2) + H_2O[1] \rightarrow CH_3-CH_2-CH_2-CH_2OH[1]$                                                                 | [2]        | (ii)    | CuSO₄                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|              | ALLOW CH <sub>3</sub> -CHOH-CH <sub>2</sub> -CH <sub>3</sub><br>butene reacts with water/steam (to form butanol) ONLY [1]               | ~          | ()      | H <sub>2</sub> O                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| (iv          | $\mathbf{V}  \mathbf{C}_{6}\mathbf{H}_{12} + \mathbf{H}_{2} \rightarrow \mathbf{C}_{6}\mathbf{H}_{14}$                                  | [2]        | (iii)   | CH <sub>2</sub> (COO) <sub>2</sub> Mg                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|              | alkenes react with hydrogen [1] ONLY                                                                                                    | ·          |         | H <sub>2</sub>                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| (d) v        | rolume of oxygen used = 150 cm <sup>3</sup>                                                                                             | [1]        | (iv)    | $K_2SO_4$<br>$CO_2$ and $H_2O$                                               | NOT H <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| vol          | lume of carbon dioxide formed = 100 cm <sup>3</sup>                                                                                     | [1]        |         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Total: |
| e.g          | any equation of the combustion of an alkene<br>$g_2 \cdot 2C_5H_{10} + 15O_2 \rightarrow 10CO_2 + 10H_2O$                               |            |         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [10tal. |
|              | mulae<br>DND balancing                                                                                                                  | [1]<br>[1] |         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|              | She buildhoing                                                                                                                          | [1]        |         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|              |                                                                                                                                         |            |         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|              |                                                                                                                                         |            |         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

| Question | 61                                                                                                                                                                              |                   | Question 62             | 2                                                                                                                                                                                                                                                    |                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| i.e.     | rrect method shown<br>. 126/14 (= 9) <b>or</b> 14x = 126 <b>or</b> x = 9 <b>or</b> (12 × 9) + 18 = 126                                                                          | [1]               | <b>2 (a) (i)</b> n<br>p | nolecule / unit / simple compound / building block and used to make a bolymer / big molecule / long chain / macromolecule                                                                                                                            | [1]               |
| no       | H <sub>18</sub><br>te: correct formula only = 1                                                                                                                                 | [1]               | n                       | commation of a polymer / big molecule / long chain / macromolecule <b>or</b> joining of nonomers <b>and</b> elimination / removal / formation of a simple or small nolecule / $H_2O$ / $HCl$ <b>note:</b> two points needed for 1 mark in both parts | [1]               |
| (1) (1)  | all hydrogen atoms 1bp<br>C—C bond atoms 1bp<br>C=C 2 bp                                                                                                                        | [1]<br>[1]<br>[1] | (ii) -(                 | O- linkage                                                                                                                                                                                                                                           | [1]               |
| (ii)     | correct repeat unit continuation                                                                                                                                                | [1]<br>[1]        |                         | hree correct monomer units.                                                                                                                                                                                                                          | [1]<br>[1]        |
| (iii)    | bonds broken<br>H-H +436 (kJ/mol) C=C +610 = +1046 (kJ/mol)<br>bonds formed                                                                                                     | [1]               | a                       | atalyst <b>and</b> from living organism<br>accept: biological catalyst / protein catalyst                                                                                                                                                            | [1]               |
|          | 2C-H -415 × 2 kJ/mol C-C -346 = -1176 (kJ/mol)<br>-130 kJ/mol / more energy released than absorbed                                                                              | [1]<br>[1]        | (ii) e                  | anzyme denatured / destroyed                                                                                                                                                                                                                         | [1]               |
|          | or:<br>bonds broken<br>3882 (kJ/mol)<br>bonds formed                                                                                                                            | [1]               | k                       | chromatography<br>ocating agent / description of locating agent<br>neasure R <sub>i</sub> / compare with standards                                                                                                                                   | [1]<br>[1]<br>[1] |
|          | 4012 (kJ/mol)<br>-130 kJ/mol / more energy released than absorbed<br><b>allow:</b> ecf for final mark as long as the answer is not positive<br><b>note:</b> units not necessary | [1]<br>[1]        | X                       |                                                                                                                                                                                                                                                      |                   |
| (c) (i)  | butan-1-ol or butan-2-ol or butanol                                                                                                                                             | [1]               |                         | *                                                                                                                                                                                                                                                    |                   |
| (ii)     | $CH_3$ - $CH_2$ - $CH(Br)$ - $CH_2Br$<br>$C_4H_8Br_2 = 1$<br><b>note:</b> any other dibromobutane = 0                                                                           | [2]               |                         |                                                                                                                                                                                                                                                      |                   |
| (iii)    | н                                                                                                                                                                               | [1]               |                         |                                                                                                                                                                                                                                                      |                   |
|          |                                                                                                                                                                                 |                   |                         |                                                                                                                                                                                                                                                      |                   |

#### Ouestion 63

| Question 63                                                                                                                                                                                                                                                                                                                                                                 | Question 64                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 (a) fraction is the distillate collected       [1]         between 40–100 °C / in the stated range       [1]                                                                                                                                                                                                                                                              | 5 (a) CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>2</sub> -OH       [1]         88       [1]         156 to159 °C       [1] |
| (b) (i) $C_8H_{18} + 25/2O_2 \rightarrow 8CO_2 + 9H_2O$ [2]<br>accept: double the above / 12.5 in front of oxygen                                                                                                                                                                                                                                                           | (b) any two from:<br>(same) general (molecular) formula                                                                                                     |
| (ii) poisonous / toxic / damages health / brain / kidneys [1]<br>note: must relate to people<br>not: just harmful                                                                                                                                                                                                                                                           | same functional group<br>consecutive members differ by -CH <sub>2</sub><br>common methods of preparation                                                    |
| <ul> <li>(iii) dibromo 2 bromine atoms (per molecule)<br/>not: Br<sub>2</sub><br/>accept: 2 bromide groups<br/>eth 2 carbon atoms (per molecule)<br/>ane a C-C single bond / no C=C / group C<sub>n</sub>H<sub>2n+1</sub> / saturated<br/>ignore: any reference to alkanes</li> </ul>                                                                                       | (c) correct structure and 4bp around carbon[1]2bp and 2nbp around oxygen[1]1bp on hydrogens[1]                                                              |
| all three correct [2] two correct only [1] [2]                                                                                                                                                                                                                                                                                                                              | (d) (i) correct structural formula for propanoic acid [1]<br>allow: OH but all other bonds to be shown                                                      |
| (iv) position of bromine atom(s) [1]                                                                                                                                                                                                                                                                                                                                        | (ii) air / oxygen [1]<br>bacteria / microbes / micro-organisms [1]                                                                                          |
| (c) $0.104/0.026$ [1]<br>n = 4 [1]                                                                                                                                                                                                                                                                                                                                          | accept: mother of vinegar<br>not: yeast                                                                                                                     |
| (d) (oxides of nitrogen) change carbon monoxide into carbon dioxide[1]oxides of nitrogen then become nitrogen[1](oxides of nitrogen) change hydrocarbons into carbon dioxide and water[1]accept: balanced equations for first two marks $2NO + 2CO \rightarrow N_2 + 2CO_2$ and $2NO \rightarrow N_2 + O_2$ [2]oxygen changes hydrocarbons into carbon dioxide and water[1] | allow: $CH_3COOC_3H_7$ not: $C_5H_{10}O_2$ [1]                                                                                                              |

| Questic | on 6         | 55                                                                                                                     |            | Qu | esti | on 6  | 56                                                                                                                                      |                       |
|---------|--------------|------------------------------------------------------------------------------------------------------------------------|------------|----|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 6 (a)   | (i)          | correct structural formula of ethanoic acid<br>allow: -OH not: -COOH                                                   | [1]        | 5  | (a)  | (i)   | many (simple) molecules form one (large) molecule / monomer mole polymer molecule                                                       | cules form one<br>[1] |
|         | (ii)         | correct structural formula of ethanol allow: -OH                                                                       | [1]        |    |      | (ii)  | addition - polymer is the only product<br><b>accept</b> - $nX \rightarrow Xn$<br>condensation polymer and simpler molecules formed      | [1]                   |
| (b)     | (i)          | ethyl ethanoate                                                                                                        | [1]        |    |      |       | accept $nX \rightarrow Xn + nHCl/H_2O$                                                                                                  |                       |
|         | (ii)         | -OC <sub>6</sub> H <sub>4</sub> COOCH <sub>2</sub> CH <sub>2</sub> O-<br>correct ester linkage<br>correct repeat units | [1]<br>[1] |    | (b)  | (i)   | $C_{12}H_{26} \rightarrow C_8H_{18} + 2C_2H_4$<br>/ any other correct version                                                           | [1]                   |
|         |              | accept: boxes if it is clear what the box represents                                                                   | [1]        |    |      | (ii)  | ethane and chlorine give range of products<br>/ ethene more readily available than ethane<br>/ waste half chlorine as hydrogen chloride | [1]                   |
| (       | (iii)        | any <b>two</b> from:<br>long time to decay                                                                             |            |    |      |       | / ethene more reactive than ethane                                                                                                      |                       |
|         |              | landfill sites<br>visual pollution / litter<br>danger to animals                                                       |            |    |      | (iii) | electrolysis<br>aqueous sodium chloride                                                                                                 | [1]<br>[1]            |
|         |              | poisonous gases when burnt<br>accept: any correct suggestion                                                           | [2]        |    |      | (iv)  | must have three correct units<br>cond continuation<br>accept -(CH2-CH(CI))n-                                                            | [1]<br>[1]            |
|         |              |                                                                                                                        |            |    |      | V     |                                                                                                                                         | [Total: 9]            |
| , p     | orote<br>or: | hetic – only two monomers<br>ein – many different monomers                                                             | [1]<br>[1] |    |      |       |                                                                                                                                         |                       |
| r<br>c  | nylor<br>or: | ein has 1 C=O and 1N–H<br>n has 2 C=O / 2N–H                                                                           | [1]<br>[1] |    |      |       |                                                                                                                                         |                       |
|         |              | hetic – one monomer is a dicarboxylic acid and the other is a diamine<br>ain all monomers are amino acids              | [1]<br>[1] |    |      |       |                                                                                                                                         |                       |

zr.

| Qu | esu | on                              | 57                                                                                                                                                                                                                                             | C        | lues | tion           | 00                                                                                                                                                             |
|----|-----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6  | (a) | con<br>san<br>san<br>phy<br>con | ne general formula<br>secutive members differ by CH <sub>2</sub><br>ne chemical properties<br>ne functional group<br>rsical properties vary in predictable way / give trend – mp increases with n etc.<br>nmon methods of preparation<br>THREE | 3]       | 5 (  |                | contains carbon, hydro<br>accept example<br>ratio 2H : 10<br>not contains water<br>ignore comments abou<br>living organism / plants<br>obtain energy from foor |
|    | (b) | (i)                             |                                                                                                                                                                                                                                                | 1]       |      |                | not burn negates energ                                                                                                                                         |
|    |     |                                 | not general formula<br>different structures / structural formulae                                                                                                                                                                              | 1]       |      | (iii)<br>(i .) |                                                                                                                                                                |
|    |     | (ii)                            | CH <sub>3</sub> -CH <sub>2</sub> -CH(OH)-CH <sub>3</sub> / (CH <sub>3</sub> ) <sub>3</sub> C-OH [7]                                                                                                                                            | 1]       |      | (iv)           | as a fertiliser / manure                                                                                                                                       |
|    |     |                                 | not ether-type structures<br>NOTE butan-2-ol and 2-methylpropan-2-ol acceptable                                                                                                                                                                |          | (    | b) (i)         | 80 cm <sup>3</sup> of oxygen there<br>40/60 × 100 = 66.7 %<br><b>accept</b> 66% and 67%                                                                        |
|    | (c) | <b>(i)</b>                      |                                                                                                                                                                                                                                                | 1]       | 7    | (ii)           | no ecf<br>add sodium hydroxide(                                                                                                                                |
|    |     | (ii)                            |                                                                                                                                                                                                                                                | 1]<br>1] |      |                | carbon dioxide dissolve                                                                                                                                        |
|    | (d) | <b>(i)</b>                      |                                                                                                                                                                                                                                                | 1]<br>1] |      |                |                                                                                                                                                                |
|    |     | (ii)                            |                                                                                                                                                                                                                                                | 1]       |      |                |                                                                                                                                                                |
|    |     |                                 |                                                                                                                                                                                                                                                | 1]       | Ť    |                |                                                                                                                                                                |
|    |     |                                 | concentration of ethanol high enough to kill/poison yeast / denature enzymes not kill enzymes [                                                                                                                                                | 1]       |      |                |                                                                                                                                                                |
|    |     | (iv)                            | to prevent aerobic respiration [<br>/ ethanol would be oxidised / ethanoic acid/ acid formed / lactic acid formed / carbo<br>dioxide and water formed                                                                                          | 1]<br>on |      |                |                                                                                                                                                                |
|    |     |                                 | [Total: 1                                                                                                                                                                                                                                      | 5]       |      |                |                                                                                                                                                                |
| _  |     |                                 |                                                                                                                                                                                                                                                |          |      |                |                                                                                                                                                                |
|    |     |                                 |                                                                                                                                                                                                                                                |          |      |                |                                                                                                                                                                |

| (a) (i) | contains carbon, hydrogen and oxygen<br>accept example               | [1]         |
|---------|----------------------------------------------------------------------|-------------|
|         | ratio 2H : 10<br>not contains water                                  | [1]         |
|         | ignore comments about carbon                                         |             |
| (ii)    | living organism / plants and animals / cells                         | [1]         |
|         | obtain energy from food<br>not burn negates energy mark              | [1]         |
| (iii)   | carbohydrates contain oxygen                                         | [1]         |
| (11)    | carbonydrates contain oxygen                                         | [']         |
| (iv)    | as a fertiliser / manure                                             | [1]         |
|         |                                                                      |             |
| (b) (i) | 80 cm <sup>3</sup> of oxygen therefore 40 cm <sup>3</sup> of methane | [1]         |
|         | 40/60 × 100 = 66.7 %<br>accept 66% and 67%                           | [1]         |
|         | no ecf                                                               |             |
|         |                                                                      |             |
| (ii)    | add sodium hydroxide(aq) / alkali                                    | [1]         |
|         | carbon dioxide dissolves, leaving methane                            | [1]         |
|         |                                                                      | [Total: 10] |
|         |                                                                      |             |

| uestion 6 | 59                                                                                                                                                                                           | Q          | Question 70                                                                                                                                               |             |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| (a) (i)   | lighter / light / lightweight / lower density       [         does not corrode / rust / oxidised       [         ignore cheaper / easier to mould       [                                    | 1] 5<br>1] | 5 (a) (i) Mg + 2CH <sub>3</sub> COOH → (CH <sub>3</sub> COO) <sub>2</sub> Mg + H <sub>2</sub><br>correct formula of magnesium ethanoate<br>ignore charges | [1]<br>[1]  |
| (ii)      | credit any two sensible suggestions e.g. rope / clothing / netting / string / carpets / fishir<br>line / fishing nets / parachutes / tyres / tents / bottles / thread / umbrellas / curtains |            | sodium ethanoate + water                                                                                                                                  | [1]         |
|           |                                                                                                                                                                                              | 2]         | (ii) ethyl ethanoate<br>displayed formula                                                                                                                 | [1]<br>[1]  |
| (iii)     | non-biodegradeable / do not rot / do not decompose / persist for years / accumulate<br>landfill sites limited / getting filled up<br>visual pollution<br>danger to fish / animals            |            | (b) (i) add up to 5.8 g                                                                                                                                   | [1]         |
|           | (burn to form) toxic gases / harmful gases / pollutant gases / acidic gases / CO / HC HF / HCN                                                                                               | !/         | (ii) moles of C atoms = $2.4/12 = 0.2$<br>moles of H atoms = $0.2/1 = 0.2$                                                                                |             |
|           | not oxides of nitrogen / sulfur<br>any three [                                                                                                                                               | 3]         | moles of O atoms = $3.2/16 = 0.2$<br>all three correct = 2                                                                                                | [2]         |
|           |                                                                                                                                                                                              |            | two correct = 1<br>empirical formula CHO                                                                                                                  | [1]         |
| (D) (I)   | accept prop-1-ene                                                                                                                                                                            | 1]         | (iiii) 116/29 = 4                                                                                                                                         | [1]         |
|           | not prop-2-ene       [         CH <sub>3</sub> -CH=CH <sub>2</sub> [         double bond must be shown       [                                                                               | 1]         | C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> correct formula with no working scores both marks.                                                           | [1]         |
| (ii)      |                                                                                                                                                                                              | 1]         | (iv) HOOCCH=CHCOOH / CH <sub>2</sub> =C(COOH) <sub>2</sub>                                                                                                | [2]         |
| ()        | cond continuation                                                                                                                                                                            | 1]         |                                                                                                                                                           | [Total: 13] |
| (c) (i)   | amide / peptide / polypeptide [                                                                                                                                                              | 1]         | *                                                                                                                                                         |             |
| (ii)      | protein / polypeptide [                                                                                                                                                                      | 1]         |                                                                                                                                                           |             |
| (iii)     | H <sub>2</sub> N(CH <sub>2</sub> ) <sub>6</sub> NH <sub>2</sub> [<br>HOOC(CH <sub>2</sub> ) <sub>8</sub> COOH                                                                                | 1]         |                                                                                                                                                           |             |
|           | [Total: 1                                                                                                                                                                                    | 5]         |                                                                                                                                                           |             |

#### **Ouestion 71**

water

| 7 (a) (i) heat                                                                                                                                                                   |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| catalyst                                                                                                                                                                         | [1<br>[1 |
| (ii) an equation that gives:                                                                                                                                                     |          |
| alkene + alkane                                                                                                                                                                  |          |
| or alkene + alkene + hydrogen                                                                                                                                                    | [1       |
| a correct and balanced equation for the cracking of decane, $C_{10}H_{22}$ but not but-1-ene                                                                                     | [1       |
| (iii) water or steam                                                                                                                                                             | [1       |
| (b) (i) $C_4H_9OH + 6O_2 \rightarrow 4CO_2 + 5H_2O$<br>If only error is balancing the oxygen atoms                                                                               | [2<br>[1 |
| If only end is balancing the oxygen atoms                                                                                                                                        | Ľ        |
| <ul> <li>(ii) butanol + methanoic acid → butyl methanoate + water<br/>correct products or reactants ONLY</li> </ul>                                                              | [2<br>[1 |
| (c) (i) correct structural formulae [1] each accept either propanol and $-OH$ in alcohol and acid penalise once for $CH_3$ type diagrams For either $C_3H_8O$ or $C_3H_6O_2$ [0] | [2       |
| (ii) to conserve petroleum or reduce greenhouse effect                                                                                                                           | [        |
| (d) have same boiling point                                                                                                                                                      | [        |
| [Tota                                                                                                                                                                            | al: 13   |
|                                                                                                                                                                                  |          |
| uestion 72                                                                                                                                                                       |          |
|                                                                                                                                                                                  |          |
| (c) (i) structural formula of $Ge_4H_{10}$ all bonds shown                                                                                                                       | [1]      |

#### Question 73 [1] [1] 7 (a) (i) 35 cm<sup>3</sup> 40 cm<sup>3</sup> (ii) forms carbon monoxide [1] poisonous or toxic or lethal or prevents blood carrying oxygen or effect on haemoglobin [1] NOT just harmful (b) (i) chlorobutane or butyl chloride [1] number not required but if given must be 1, it must be in correct position (ii) light or UVor 200°C or lead tetraethyl [1] (iii) any correct equation for example 2-chlorobutane or dichlorobutane [1] (c) (i) correct repeat unit [1] **COND** continuation [1] -(CH(CH<sub>3</sub>)-CH<sub>2</sub>)-(ii) butan-1-ol or butan-2-ol or butanol [1] if number given then formula must correspond for second mark and number must be in correct position [1] structural formula of above CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>OH or CH<sub>3</sub>-CH(OH)-CH<sub>2</sub>-CH<sub>3</sub> NOT C<sub>4</sub>H<sub>9</sub>OH if first mark not awarded then either formula will gain mark [1] ACCEPT either formula for "butanol" (iii) CH<sub>3</sub>-CH(Cl)-CH<sub>3</sub> or CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>2</sub>-Cl [1] NOT C<sub>3</sub>H<sub>7</sub>Cl

[Total: 12]

[1]

response must not include HC1 if equation given look at RHS only

| (b) (i) | sterilise/disinfect water <b>or</b> kill microbes/germs bacteria, etc.<br><b>NOT just</b> to make it safe to drink <b>or</b> purify it <b>or</b> clean it<br>treat above as neutral they do not negate a correct response | [1 |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (ii)    | ammonia <b>or</b> methanol <b>or</b> hydrogen chloride <b>or</b> margarine<br><b>NOT</b> nylon                                                                                                                            | [1 |
| (iii)   | fat <b>or</b> lipid <b>or</b> triester <b>or</b> named fat <b>or</b> glyceryl stearate<br><b>or</b> vegetable oil                                                                                                         | [1 |
|         | heat                                                                                                                                                                                                                      | [1 |

## Question 75

| 4 | (a) | (i)   | $C_6H_5COOH$ or $C_6H_5CO_2H$<br>NOT $C_7H_6O_2/C_6H_6COO$                                                                                           | [1]        |
|---|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|   |     | (ii)  | sodium hydroxide + benzoic acid = sodium benzoate + water<br>correct spelling needed <b>NOT</b> benzenoate<br><b>ACCEPT</b> correct symbol equation  | [1]        |
|   |     | (iii) | sodium carbonate <b>or</b> oxide <b>or</b> hydrogencarbonate<br>any <b>TWO</b><br><b>NOT</b> Na                                                      | [2]        |
|   | (b) | (i)   | 7.7%                                                                                                                                                 | [1]        |
|   |     | (ii)  | for any number: equal number ratio<br>for example 1:1 <b>or</b> 6:6                                                                                  | [2]        |
|   |     | (iii) | empirical formula is CH molecular formula is $C_6H_6$ no e.c.f., award of marks not dependent on (ii)                                                | [1]<br>[1] |
|   | (c) | (i)   | C <sub>6</sub> H <sub>8</sub> O <sub>6</sub>                                                                                                         | [1]        |
|   |     | (ii)  | carbon – carbon double bond <b>o</b> r alkene<br>alcohol <b>o</b> r hydroxyl <b>o</b> r hydroxy<br><b>NOT</b> hydroxide<br>hydroxide and alcohol = 0 | [1]<br>[1] |
|   |     |       | [Total                                                                                                                                               | : 12]      |

[1] [1] [1] [1]