O'LEVELS MOLES & STOICHIOMETRY

Multiple Choice Questions

By Fahad H. Ahmad www.fahadsacademy.com

MCQ - MOLES & STOICHIOMETRY

MCQ 1.a

17 The table shows the energy released by the complete combustion of some compounds used as fuels.

compound	formula	M _r	ΔH in kJ/mol
benzene	C_6H_6	78	-3270
heptane	C ₇ H ₁₆	100	-4800
octane	C ₈ H ₁₈	114	-5510
propane	C ₃ H ₈	44	-2200

Which fuel releases the least energy when 1 g of the compound is completely burned?

- A benzene
- B heptane
- **c** octane
- D propane

MCQ 2.b

11 Sulfuric acid and potassium hydroxide can react together to form potassium hydrogensulfate, KHSO₄, and water only.

Which amounts of the reactants are required?

- A equal masses of sulfuric acid and potassium hydroxide
- B equal numbers of moles of sulfuric acid and potassium hydroxide
- C 1 mol of sulfuric acid to 2 mol of potassium hydroxide
- D 2 mol of sulfuric acid to 1 mol of potassium hydroxide

5070_s14_qp12

MCQ 3.d

12	The	e diagram show	s the	structures	of the ato	oms of ele	ments L	and	d <i>M</i> .
						ee ee 8p 8n	ee)	p = proton n = neutron e = electron
						M			
	The Wh	e elements com nat is the mass o	bine t of one	to form a c e mole of th	ompound nis compo	und?		D	30.2
5070	~	4 an12	В	129	C	23g	'		50 g
)_31	4_qp12							
мсс	24.b)							
9	An	n element, <i>E</i> , fo	rms a	hydride, E	H₄, whicl	n contains	90.0%	by r	nass of <i>E</i> .
	lf t	the relative stor	nio m						
			nic ma	ass of hydi	rogen is 1	, what is t	he relati	vea	atomic mass of E?
	A	9	B	ass of hydi 36	rogen is 1 C	, what is t 86	he relati	ve a D	90
5070	A)_s1	9 4_qp11	B	36	rogen is 1 C	, what is t 86	he relati	ve a D	90
5070 MCC	A)_s1) 5.d	9 4_qp11	B	36	rogen is 1 C	, what is t 86	he relati	D	90
5070 MCC 10	A 0_s1 0 5.d A p cha [<i>M</i> r Wh	9 4_qp11 d piece of chalk h alk is found to c .: CaCO ₃ , 100] nat is the percer	B nas a ontair	36 mass of 2 n 0.226 mo purity of th	3.0g. Cha les of pur	, what is t 86 alk is imp e calcium f chalk?	ure calc carbona	ve a D ium ate.	90 carbonate. When analysed, the
5070 MCC 10	A)_s1 () 5.d A p cha [<i>M</i> r Wh	9 4_qp11 biece of chalk h alk is found to c : CaCO ₃ , 100] hat is the percer 0.983%	B nas a ontair ntage B	ass of hydr 36 mass of 2 n 0.226 mo purity of th 1.02%	3.0g. Cha les of pur te piece o C	, what is t 86 alk is imp e calcium f chalk? 77.0%	ure calc carbona	ve a D ium ate.	90 carbonate. When analysed, the 98.3%
5070 MCC 10	A D_s1: 2 5.d A p cha [Mr Wh A D_s1:	9 .4_qp11 d piece of chalk h alk is found to c .: CaCO ₃ , 100] nat is the percer 0.983% 4_qp11	B nas a ontair ntage B	ass of hydr 36 mass of 2 n 0.226 mo purity of th 1.02%	3.0g. Cha les of pur te piece o C	, what is t 86 alk is imp e calcium f chalk? 77.0%	ure calc carbona	ve a D ium ate.	90 carbonate. When analysed, the 98.3%
5070 MCC 10 5070	A)_s1:)_s1: (Mr Wh A)_s1:)_s1:)_s1:)_s1:)_s1:)_s1: (Mr)	9 4_qp11 d piece of chalk h alk is found to c c: CaCO ₃ , 100] hat is the percer 0.983% 4_qp11	B nas a ontair ntage B	ass of hydr 36 mass of 2 n 0.226 mo purity of th 1.02%	3.0g. Cha les of pur te piece o C	, what is t 86 alk is imp e calcium f chalk? 77.0%	ure calc carbona	D ium ate.	90 carbonate. When analysed, the 98.3%
5070 MCC 10 5070 MCC 26	A)_s1:)_5.d A p cha [Mr Wh A)_s1:)_6.c Wh [Ar, [Ar, [Ar, [Ar, [Ar, [Ar, [Ar, [Ar,	9 4_qp11 d piece of chalk h alk is found to c c: CaCO ₃ , 100] hat is the percer 0.983% 4_qp11	nas a ontair ntage B ntage , 16; I	ass of hydr 36 mass of 2 n 0.226 mo purity of th 1.02% n, by mass, P, 31]	of nitroge	, what is t 86 alk is imp e calcium f chalk? 77.0% en in the f	ure calc carbona	D ium ate.	90 carbonate. When analysed, the 98.3%
5070 MCC 10 5070 MCC 26	A)_s1:)_5.d A p cha [Mr Wh A)_s1: (Mr A) (Mr A)_s1: (Mr A) (Mr A	9 .4_qp11 d piece of chalk h alk is found to c .: CaCO ₃ , 100] nat is the percer 0.983% .4_qp11 c hat is the perce .: H, 1; N, 14; O 9.4%	nas a ontair ntage B ntage , 16; I B	ass of hydr 36 mass of 2 n 0.226 mo purity of th 1.02% h, by mass, P, 31] 18.8%	rogen is 1 C 3.0g. Cha les of pur le piece o C C	, what is t 86 alk is imp e calcium f chalk? 77.0% en in the f 28.2%	ure calc carbona	D ium ate. D (NH	90 carbonate. When analysed, the 98.3% l ₄) ₃ PO ₄ ? 37.6%

мса	۲.d								
15	Sod	ium hydroge	encarbo	nate decom	poses on	heating.			
				2NaHC	$O_3 \rightarrow Na$	a ₂ CO ₃ +	H ₂ O + (CO2	
	In a	n experimer	nt, a 5.0	mol sample	of sodiur	n hydroge	encarbon	ate	is heated.
	Whi	ch volume c	of carbor	n dioxide, m	easured	at room te	mperatu	ire a	and pressure, is evolved?
	Α	24 dm ³	в	36 dm ³	С	48 dm ³	C)	60 dm ³
5070	_w1	3_qp12							
мсо) 8.h								
10	18 (g of water co	ontains tl	ne same nu	mber of n	nolecules	as		
	Α	18g of amr	nonia ga	as.					\sim
	в	2g of hydro	ogen gas	S.					()
	С	14g of nitro	ogen gas	5.					\sim / \succ
	D	16g of oxy	gen gas						
5070	_w1	3_qp12					V		
мса	(9.a						\succ		•
11	The volu	e complete d umes were n	combust neasure	ion of 20 cn d at r.t.p	n ³ of a ga	aseous al	kane, X ,	req	uires 130 cm ³ of oxygen. Both
	Wh	at could be t	the ident	ity of X ?			V		
	Α	butane			X				
	в	ethane		\mathbf{A}					
	с	methane	6						
	D	propane		\searrow					
5070	_w1	3_qp12							
мса	10.0								
11	So	dium hydrog	jencarbo	onate decor	nposes o	n heating			
		$\langle \rangle$		2NaH0	$O_3 \rightarrow N$	la₂CO₃ +	H ₂ O +	СС	D_2
	In a	an experime	ent. a 5.0	mol sampl	e of sodiı	um hvdroo	encarbo	onat	e is heated.
	Wh	ich volume	of carbo	n dioxide r	neasured	at room	tempera	ture	and pressure is evolved?
	•	$24 \mathrm{dm}^3$		$36 \mathrm{dm}^3$	r	48 dm ³	tempera		$60 \mathrm{dm}^3$
	^	27011	В	Jouin	C	Houm		5	ooum
5070	_w1	3_qp11							

MCQ 11.c

12 Nitrogen and oxygen react according to the equation.	
$N_2(g)$ + $2O_2(g) \rightarrow 2NO_2(g)$	
The enthalpy change for the reaction shown is +66kJ.	
If two moles of nitrogen and two moles of oxygen are used, what will be the enthalpy change?	
A +16.5k B +33k C +66k D +132k	
5070 w13 gp11	
5070_W15_dp11	
MCQ 12.a	
13 Which statement about the four gases carbon dioxide, CO_2 , hydrogen, H_2 , oxygen, O_2 and ozone O_3 is correct?	э,
A One mole of each gas occupies the same volume at a given temperature and pressure.	
B Ozone has the fastest rate of diffusion at a given temperature and pressure.	
C They are all denser than air.	
D They are all elements.	
5070_w13_qp11	
MCQ 13.b	
14 Two of the reactions used in the manufacture of nitric acid, HNO ₃ , are shown.	
$2NO + O_2 \rightarrow 2NO_2$	
$4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$	
What is the maximum number of moles of nitric acid which could be formed from one mole on nitrogen monoxide, NO?	f
A 0.5 B 1.0 C 2.0 D 4.0	
5070_w12_qp12	
MCQ 14.d	
13 0.5 mol/dm ³ hydrochloric acid is added gradually to a flask containing 20 cm ³ of 2 mol/dm sodium hydroxide solution.	1 ³
What is the total volume, in cm ³ , of the mixture in the flask when the solution is just neutral?	
A 30 B 40 C 60 D 100	
5070_w12_qp12	

MCQ 15.c

24		ich contains th		atoot mage	of pitros	0.02			
31	vvn	non contains tr	ie gre	alest mass	ormitrog	ellí			
	Α	0.5 moles (N	$0.5 \text{ moles } (NH_4)_2SO_4$						
	В	1 mole NH₄N	O ₃						
	С	1.5 moles (N	H₄)₃P	O ₄					
	D	2 moles CO(NH ₂) ₂						
5070)_w1	2_qp11							
мсс	Q 16.	C							
12	The	<i>M</i> _r of oxygen,	O ₂ , is	32 and the	<i>M</i> _r of su	lfur is 25	6.		
	Wha	at is the formul	a of a	molecule of	f sulfur?				
	Α	S ₂	в	S ₄	с	S ₈		D	S ₁₆
5070)_w1	2_qp11							
							$\overline{}$		
МСС	Q 17.	b							
8	A c one	ompound Y is volume of dry	the c carbo	only substan on dioxide (b	ce forme oth volu	ed when mes mea	two vo asured	lume at s.t	es of dry ammonia gas react withp.).
	Wh	at is the most l	ikely 1	formula of Y	?				
	Α	(NH ₄) ₂ CO ₃					~		
	в	NH ₂ COONH ₄				\mathbf{N})		
	С	(NH ₂) ₂ CO				Ť			
	D	NH₄COONH₄							
5070)_w1	2_qp11	ſ						
МСС	Q 18.	a	\mathbf{A}	U'					
13	Ana	alysis of a sam	ple of	an oxide of	nitrogen	gave the	follow	ing d	ata.
		• perce	entag	e by mass of	f nitroger	n 47%			
		• perce	entage	e by mass o	foxygen	53%			
	Wh [A _r :	at is the empiri N, 14; O, 16]	ical fo	rmula of <mark>t</mark> his	oxide?				
	Α	NO	в	NO ₂	С	N ₂ O		D	N_2O_3
5070) w1	4 gp11							

Fahad H. Ahmad (+92 323 509 4443)

MCQ 19.d

13	Wh	ich fertiliser conta	ains	the greatest pe	ercer	tage by	mass of	nitro	ogen?
	Α	$(NH_4)_2HPO_4$	Mr	= 132					
	в	$(NH_4)_2SO_4$	Mr	= 132					
	С	NH₄NO ₃	Mr	= 80					
	D	$CO(NH_2)_2$	M	= 60					
5070	_w1	4_qp12							
	2.0								
MCQ	20.0		~ '	L state has					\rightarrow
14	AV	olume of ethane,	C ₂ t	1 ₆ , at r.t.p. has	a ma	ass of 20	g.		
	Wh	at is the mass of	an	equal volume o	fpro	pene, C _a	H ₆ , at r.t	t.p.?	
	Α	20 g	В	21 g	С	28 g		D	42g
5070	w1	4 ap12							\sim
	_	11-							
мсо	21.0	2							
11	Wh of c	at is the empirica	al fo	rmula of a com	pour	nd contai	ning 12g	g of	carbon, 2g of hydrogen and 16g
	Α	СНО	в	CHO ₂	С	CH₂O		D	C ₂ HO
5070	_w1	4_qp12							
MCQ	.22.a	3	4						
11	What mol 35.5	at is the ratio of ecules in 2 g of 5]	the gase	e number of m eous hydrogen'	olec ? [Re	ules in 7 elative at	1 g of g comic ma	gase asse	eous chlorine to the number of es A _r (atomic weights): H, 1: C <i>1</i> ,
	Α	1:1	в	1:2	С	2:1		D	71:2
5070	_w1	1_qp11							
мсо	23.0								
12	Wh	at is the relative r	nole	ecular mass M _r	of C	uSO₄.5H	₂O?		
	Α	160	в	178	С	186		D	250
5070	_w1	1_qp11							

MCQ 24.b

33 The compounds $CO(NH_2)_2$ and NH_4NO_3 are used as fertilisers.

The proportion of nitrogen by mass in $CO(NH_2)_2$ is1.... that in NH_4NO_3 .

The proportion of nitrogen by mole in $CO(NH_2)_2$ is2.... that in NH_4NO_3 .

Which words correctly complete gaps 1 and 2?

	1	2
Α	equal to	equal to
в	higher than	equal to
С	higher than	higher than
D	lower than	lower than

5070_s13_qp12

MCQ 25.b

	•							
11	One volume of form two volumes	of a gase mes of a g	ous eleme gaseous h	ent X₂ con ydride.	nbines w	ith àn equa	al volume of ga	seous hydrogen to
	What is the fo	rmula for	the hydrid	le of X?		\mathbf{X}		
	Α H ₂ X	В	HX	С	HX_2	D	H_2X_2	
5070	_s13_qp12							
мса	26.d			\mathbf{V}				
12	The relative a	atomic ma	iss of chlo	rine is 35.	5.			
	What is the m	nass of 2	moles of a	chlorine ga	s?			
	A 17,75g	В	35.5 g	С	71g		D 142g	
5070	_s13_qp12	\bigcirc	U.					
мса	27.c	$\overline{\ }$						
11	In an experim combustion to	nent, 1 cm give 3 cm	n ³ of a ga n ³ of carbo	aseous hyo n dioxide.	drocarbo All gas v	on X requir volumes are	ed 4 cm ³ of ox e measured at r.	ygen for complete t.p.
	Which formula	represer	nts X?					
	A C ₂ H ₂	В	C_2H_4	с	C_3H_4	D	C_3H_8	
5070	_s13_qp11							

MCQ 28.b

- 12 What is the concentration of a solution containing 1.0 g of sodium hydroxide in 250 cm³ of solution?
 - A 0.025 mol/dm³
 - **B** 0.10 mol/dm³
 - **C** 0.25 mol/dm³
 - **D** 1.0 mol/dm^3

5070_s13_qp11

MCQ 29.a

13 What has the same mass as 0.25 mol of copper atoms?

- A 0.5 mol of oxygen molecules
- B 1 mol of sulfur dioxide molecules
- C 1.5 mol of water molecules
- D 2 mol of oxygen atoms

5070_s12_qp12

MCQ 30.c

37 A 10 cm³ sample of a gaseous hydrocarbon is completely burnt in oxygen. The total volume of the products is 70 cm³. All gas volumes are measured at room temperature and pressure.

Which equation represents the combustion of the hydrocarbon?

$$A \quad CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

$$\textbf{B} \quad C_2H_4(g) \ + \ 3O_2(g) \ \rightarrow \ 2CO_2(g) \ + \ 2H_2O(g)$$

C
$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

$$\mathbf{D} \quad 2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$$

5070_s12_qp11

MCQ 31.d

11 The equation for the burning of hydrogen in oxygen is shown.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

What does this equation indicate?

- A 2 atoms of hydrogen combine with 2 atoms of oxygen.
- B 2g of hydrogen combine with 1g of oxygen.
- C 2 moles of steam can be obtained from 0.5 mole of oxygen.
- D 2 moles of steam can be obtained from 1 mole of oxygen.

5070_s12_qp11

MCQ 32.a

9 15.0 cm³ of 1.0 mol/dm³ potassium hydroxide just neutralise 20.0 cm³ of a solution of nitric acid.

What is the concentration of the acid?

A 0.75 mol/dm^3

- **B** 1.0 mol/dm^3
- $C = 1.5 \text{ mol/dm}^3$
- **D** $7.5 \text{ mol}/\text{dm}^3$

5070_s12_qp11

MCQ 33.d

11	The equation for the reaction between calcium carbonate and hydrochloric acid is shown.						
	$CaCO_{3}(s) + 2HCl(aq) \rightarrow CaCl_{2}(aq) + H_{2}O(I) + CO_{2}(g)$						
	How many moles of calcium carbonate will give 24 cm ³ of carbon dioxide when reacted with an excess of the acid?						
	(Assume one mole of carbon dioxide occupies 24 dm ³ .)						
	A 1 mol B 0.1 mol C 0.01 mol D 0.001 mol						
5070)_s11_qp11						
мсс	134.b						
12	The empirical formula of a liquid compound is C_2H_4O .						
	To find the empirical formula, it is necessary to know the						
	A density of the compound.						
	B percentage composition of the compound.						
	C relative molecular mass of the compound.						
	D volume occupied by 1 mole of the compound.						
5070	_s11_qp11						
мсс	135.c						
4	What is the mass of oxygen contained in 72g of pure water? [Relative atomic masses: $H = 1$; $O = 16$]						
	A 16g B 32g C 64g D 70g						
5070)_s11_qp11						

MCQ 36.c

- 11 What is the concentration of iodine molecules, I_2 , in a solution containing 2.54 g of iodine in 250 cm^3 of solution?
 - A 0.01 mol / dm³
 - B 0.02 mol/dm³
 - C 0.04 mol/dm³
 - D 0.08 mol/dm³

5070_w10_qp11

MCQ 37.a

32 The diagram shows apparatus for measuring the volume of hydrogen given off when an excess of dilute hydrochloric acid is added to powdered metal. The volume of gas is measured at room temperature and pressure.

The experiment is carried out three times, using the same mass of powder each time but with different powders:

- pure magnesium
- pure zinc
- a mixture of magnesium and zinc

Which powder gives the greatest volume of hydrogen and which the least volume?

	greatest volume of H ₂	least volume of H ₂
Α	magnesium	zinc
в	magnesium	the mixture
С	zinc	magnesium
D	zinc	the mixture

5070_s10_qp11

Fahad H. Ahmad (+92 323 509 4443)

мсс	2 38	.d							
9	W	nat is the mas	s of on	e mole of car	bon-123	?			
	Α	0.012 g	в	0.024g	С	1g	D	12 g	
5070)_s1	.0_qp11							
мсо	2 39	.a							
10	Tw	o different hyd	drocart	oons each co	ntain th	e same p	percentage	by mass of hydrog	en.
	lt fo	ollows that the	ey have	the same					
	Α	empirical for	mula.						
	в	number of is	omers						
	С	relative mole	ecular r	nass.					\bigcirc
	D	structural for	mula.						
5070)_s1	.0_qp11					4	$\overline{\Omega}$	
мсо) 40	.C							
32	W	hat is the con	centrat	ion of hydrog	gen ions	in 0.05 r	nol/dm ³ s	ulfuric acid?	
	Α	0.025 g/dm	³ B	0.05g/dm	³ C	0.10g	/dm ^{/3}	2.0g/dm^3	
5070)_w	09_qp1					X		
	_								
мсс	241	.a				<u>\</u> •			
12	Hy	drogen reacts	with o	xygen as sho	own in th	ne equati	on below.		
				21	H ₂ (g) + ($\mathfrak{D}_2(g) \to 2$	2H ₂ O(I)		
	Ho ten	w much gas nperature?	will re	main if 2 dr	n ³ of hy	ydrogen	are reacte	d with 1 dm ³ of o	xygen at room
	Α	0 dm ³	в	1 dm ³	С	2 dm ³	D	3 dm ³	
5070)_w	09_qp1							
		\backslash							

мсо	Q 42.d
9	A sample of hydrogen is a mixture of the two isotopes ${}_{1}^{1}H$ and ${}_{1}^{2}H$.
	The relative atomic mass of oxygen is 16.
	What are possible values of the relative molecular mass of different molecules of water formed by the combination of oxygen and hydrogen?
	1 18
	2 19
	3 20
	A 1 only
	B 1 and 2 only
	C 1 and 3 only
	D 1, 2 and 3
5070	0_w09_qp1
MC	Q43.c
10	Calcium reacts with water as shown.
	$Ca(s) + 2H_2O(I) \rightarrow Ca(OH)_2(aq) + H_2(g)$
	What is the total mass of the solution that remains when 40 g of calcium reacts with 100 g of water?
	A 58g B 74g C 138g D 140g
5070	0_w09_qp1
мсо	Q 44.b
19	The fertiliser ammonium nitrate (NH ₄ NO ₃ , M_r = 80) is manufactured from ammonia (NH ₃ , M_r = 17) by a two-stage process. Stage 1 NH ₂ + 2O ₂ \rightarrow HNO ₃ + H ₂ O
	Stage 2 HNO ₃ + NH ₃ \rightarrow NH ₄ NO ₃
	What is the maximum mass of fertiliser that can be made if only 17 tonnes of ammonia is available?
	A 34 tonnes B 40 tonnes C 80 tonnes D 97 tonnes
5070	0_w08_qp1

MCQ 45.b

17	7 Carbon dioxide can be obtained as shown in the equation.										
			3	Na ₂ CO ₃ +	2H₃P	04 -	→ 2Na	PO ₄ + 30	CO ₂ +	- 3H ₂ O	
	Ho	w many mole	es of pho	osphoric a	cid, H	3PO4	, are n	eeded to	prod	uce 1.5r	mol of carbon dioxide?
	Α	0.5	в	1.0		с	1.5		D	2.0	
5070)_w(08_qp1									
мсс	MCQ 46.d										
14	Wh	When added to 20 cm ³ of 0.5 M sulphuric acid, which substance would give a neutral solution?									
	Α	A 20 cm ³ of 0.5 M sodium hydroxide									
	в	10 cm ³ of 0.	5M sodi	ium hydro:	kide					(N.
	С	40 cm ³ of 1.	0 M sodi	um hydro	kide						
	D	20 cm ³ of 1.	0 M sodi	um hydro	kide						\mathbf{i}
5070)_w(08_qp1									
мсс	Q 47.	.b					1				
10	Wh	nich gas conta	ains the	same nun	nber of	f mol	ecules	as 9g of	wate	er?	
	Α	2g of hydro	gen					X			
	в	14g of nitro	gen								

- C 32g of oxygen
- D 44g of carbon dioxide

5070_s09_qp1

MCQ 48.d

11 The equation for the reaction between copper and nitric acid is shown.

$$Cu + wHNO_3 \rightarrow xCu(NO_3)_2 + yNO + zH_2O$$

v, w, x, y and z are whole numbers.

Which values of v, w, x, y and z balance the equation?

V

	V	w	x	У	z
Α	1	2	1	1	1
в	1	4	1	2	2
С	3	4	3	2	2
D	3	8	3	2	4

5070_s09_qp1

MCC	Q 49.	с						
12	The	e mass of one m	ole d	of a chloride form	ned	by a metal Y is 7	′4.5g].
	Wh	at is the formula	of t	he chloride?				
	Α	Y ₃ C1	в	Y ₂ Cl	С	YC1	D	YCl ₂
5070	0_s0	9_qp1						

MCQ 50.c

		•								
20	Wh solu	en 20 cm ³ of a ution of sulphur	2 mo ic aci	l/dm ³ solut id, the temp	ion of pota perature o	assium hydro f the mixture	oxide is rises.	mixed with 20 cm ³ of a 1 mol/dm ³		
	Wh	at best explain	s this	?				\wedge		
	Α	Sulphuric acid	l is a	strong acid	l.					
	в	The potassium	n hyd	roxide solu	ition is mo	re concentra	ted thar	n the sulphuric acid solution.		
	C The reactants have a higher energy content than the products.									
	D	Potassium hy	droxid	de is a very	strong al	kali.				
s/08	/qp1									
мсс	٤ 5 1.	d								
13	On	e mole of a san	nple (of hydrated	sodium s	ulphide cont	ains 162	g of water of crystallisation.		
	Wh	at is the correc	t forn	nula of this	compoun	d?				
	Α	Na ₂ S.3H ₂ O	в	Na ₂ S.5H	0 C	Na ₂ S.7H ₂ C	D	Na ₂ S.9H ₂ O		
s/08	/qp1	-								
мсс	٤ <u>5</u> 2.	с		\wedge						
12	A sa The	ample of coppe diagram show	er con /s the	itains a me apparatus	tal impurit used for	y which is be refining the s	elow cop ample.	oper in the reactivity series.		
<		\mathcal{S}		impure copper anode (positive)			pure copp cath (neg	ode ative)		
							aque — copp sulph	ous er(II) late		
	The (ne	e loss in mass gative electrod	of th e) is 4	e anode (p 45g.	ositive ele	ectrode) is 5	0g and	the gain in mass of the cathode		
	Wh	at is the percer	ntage	purity of th	is sample	of copper?				
	Α	10.0 %	в	11.1%	С	90.0%	D	95.0%		
s/08	/qp1									

MC	Q 53	.a										
11	The element X forms a gaseous molecule X_2 . One volume of X_2 combines with one volume of hydrogen to form two volumes of a gaseous hydride.											
	Wh	nat is the form	nula for	the hydride	e of <i>X</i> ?							
	Α	HX	в	HX_2	С	H_2X		D	H_2X_2			
s/07	/qp	1										
MC	Q 54	.C										
12	Wh	ich substanc	e has t	he highest	percentaç	ge by mas	ss of nitr	oge	en?	\mathbf{A}		
	Α	NH ₄ NO ₃	<i>M</i> _r =	80								
	в	(NH ₄) ₂ SO ₄	<i>M</i> _r =	132						\mathcal{N}		
	С	CO(NH ₂) ₂	<i>M</i> _r =	60								
	D	(NH ₄) ₃ PO ₄	<i>M</i> _r =	149						\sim		
s/07	/qp	1										
MC	0 55	.a										
31	All	ammonium s	alts on	heating wit	h sodium	hydroxid	e produc	ce a	immonia g	jas.		
	From which ammonium salt can the greatest mass of ammonia be obtained?											
	Δ	0.5mol (NH	4)2PO4		3							
	В	0.5 mol (NH	4)2SO4			\backslash .						
	c	1.0 mol NH	C1									
	D	1 0 mol NH	NOa									
w/0	- 7/ar	1										
		$\langle \rangle$		0								

MCQ 56.a

28 The diagram shows apparatus for measuring the volume of hydrogen given off when an excess of dilute hydrochloric acid is added to powdered metal. The volume of gas is measured at room temperature and pressure.

- pure magnesium
- pure zinc
- a mixture of magnesium and zinc

Which powder gives the greatest volume of hydrogen and which the least volume?

	greatest volume of H_2	least volume of H_2
Α	magnesium	zinc
в	magnesium	the mixture
с	zinc	magnesium
D	zinc	the mixture
/an1		

w/07/qp1

MCQ 57.d

12 The equation represents the action of dilute nitric acid on copper.

 $xCu + yHNO_3 \rightarrow xCu(NO_3)_2 + 4H_2O + 2NO$

What are the values of x and y?

```
A x = 1, y = 4
```

- **B** x = 1, y = 8
- **C** x = 3, y = 4
- **D** x = 3, y = 8

```
w/07/qp1
```

MCQ 58.c

1	0	Wh	ich quantity is th	ie sa	ame for one m	nole of e	thanol an	d one n	nole of ethane?	
		Α	mass							
		в	number of aton	ns						
		С	number of mole	ecule	es					
		D	volume at r.t.p.							
w,	/06	j/qp	1							
м	co	50	h							
1	1	In a	an experiment 20	64 a	of strontium	reacts w	ith 213a	of chlori	ine.	
		\//ь	at is the formula	o of a	stroptium chlo	vrido?				
		•				, iue:	0-01			
W	/06	A Jan	1	в	SrC l ₂	C	SrC13		D Sr ₂ Gl	
		7 YP	±							
Μ	CQ	60.	d							
2	5	Wh	at is the mass o	falu	iminium in 20	4g of al	uminium	oxide, A	12O3?	
		Α	26g	в	27 g	С	54 g		D 108 g	
w,	/05	/qp	1		4					
м	cq	61.	а			\mathbf{N}				
1	1	What r.	at is the ratio of t.p.?	the	volume of 2 g	of hydro	ogen to th	e volun	ne of 16g of methane, b	oth volumes
		Α	1 to 1	в	1 to 2	С	1 to 8	ſ	D 2 to 1	
w,	/05	/qp	1		()					
M	cq	62.	a		\mathbf{O}					
2	8	All a	ammonium saits	s on	neating with	sodium	hydroxide t maga of	produc	ia ha abtainad?	
	<			liun	Salt Car the	greates	111111111111111111111111111111111111111	ammon	lia be obtained?	
		A	0.5 mol (NH ₄) ₃ F	PO ₄						
		В	0.5 mol (NH ₄) ₂ S	5O ₄						
		C	1.0 mol NH₄C <i>l</i>							
	10.5	D	1.0 mol NH₄NC) ₃						
w,	/04	/qp	L							

MCQ 63.c

18 The table shows the energy released by the complete combustion of some compounds used as fuels.

compound	formula	Mr	ΔH in kJ/mol		
methane	CH₄	16	-880		
ethanol	C_2H_5OH	46	-1380		
propane	C ₃ H ₈	44	-2200		
heptane	C ₇ H ₁₆	100	-4800		

Which fuel produces the most energy when 1g of the compound is completely burned?

- A ethanol
- B heptane
- c methane
- D propane

w/04/qp1

MCQ 64.a

11 'Cracking' of hydrocarbons breaks them into smaller molecules.

Which example of 'cracking' would produce the largest volume of products from one mole of hydrocarbon? Assume that all measurements are made at the same temperature and pressure.

- **A** $C_6H_{14}(g) \rightarrow 3C_2H_4(g) + H_2(g)$
- **B** $C_8H_{18}(g) \rightarrow 2C_3H_8(g) + C_2H_2(g)$
- **C** $C_{10}H_{22}(g) \rightarrow C_8H_{18}(g) + C_2H_4(g)$
- **D** $C_{12}H_{26}(g) \rightarrow C_8H_{18}(g) + 2C_2H_4(g)$

w/04/qp1

MCQ 65.a

12 When 20 cm³ of a gaseous alkene burns in an excess of oxygen, 60 cm³ of carbon dioxide are formed. Both volumes are measured at r.t.p.

What is the formula of the alkene?

- A C₃H₆
- B C₃H₈
- C C₆H₁₂
- D C₆H₁₄

w/04/qp1

MCQ 66. 11 What is the mass of magnesium which completely reacts with 250 cm³ of 1.0 mol/dm³ sulphuric acid? A 6g 12 g С 48 g 96 g в D w/03/qp1 MCQ 67.c 12 A volume of ethane, C₂H₆, at r.t.p. has a mass of 20 g. What is the mass of an equal volume of propene, C_3H_6 , at r.t.p.? A 20g **B** 21g C 28 g D 42 g w/03/qp1 MCQ 68.d 11 An 8 g sample of oxygen atoms contains the same number of atoms as 16 g of element X. What is the relative atomic mass, A_r , of **X**? С **A** 4 **B** 8 16 D 32 s/06/qp1 MCQ 69.d 10 2 dm³ of aqueous sodium hydroxide of concentration 5 mol/dm³ were required for an experiment. How many moles of sodium hydroxide were needed to make up this solution? С 10 A 2.5 в 5 D 7 s/06/qp1 MCQ 70.c 28 Aluminium sulphate can be obtained as shown in the equation. $2Al(OH)_3 + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 6H_2O$ How many moles of sulphuric acid are needed to produce 0.5 mol of aluminium sulphate? A 0.5 в 1.0 C 1.5 D 3.0 s/05/qp1 MCQ 71.b How many moles per dm³ of gaseous carbon dioxide are there if 4.4 g occupies 500 cm³? 9 A 0.1 mol/dm³ B 0.2 mol/dm³ 2.2 mol/dm³ 8.8 mol/dm³ С D s/05/qp1

MCQ 73.a

19 The diagram shows apparatus for measuring the volume of hydrogen given off when an excess c dilute hydrochloric acid is added to powdered metal. The volume of gas is measured at roor temperature and pressure.

The experiment is carried out three times, using the same mass of powder each time but wit different powders:

- pure magnesium
- pure zinc
- a mixture of magnesium and zinc

Which powder gives the greatest volume of hydrogen and which the least volume?

	greatest volume of H ₂	least volume of H_2			
Α	magnesium	zinc			
в	magnesium	the mixture			
С	zinc	magnesium			
D	zinc	the mixture			
		*			

s/04/qp1

MCQ 74.c

15 The equation for the burning of hydrogen in oxygen is shown below.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

Which information does this equation give about the reaction?

- A 36g of steam can be obtained from 16g of oxygen.
- B 2 g of hydrogen combine with 1 g of oxygen.
- C 2 mol of steam can be obtained from 1 mol of oxygen.
- D 2 atoms of hydrogen combine with 2 atoms of oxygen.

s/04/qp1

мсс	Q 75.	b											
14	The	e formula	of an	oxide	of ura	nium is l	UO ₂ .						
	Wh	at is the	formu	la of t	he corre	espondi	ng ch	loride?					
	Α	UCl ₂		в	UCl ₄		С	U ₂ C1	D	U₄C	:1		
s/04	/qp1												
мсс	ጋ 76.	С											
13	Wha 250	at is the o cm ³ of s	conce olutio	ntratio n?	on of io	dine, I ₂ ,	mole	cules in a s	olution	contair	ing 2.54	g of iodin	ne in
	Α	0.01 mo	l/dm ³	в	0.02 m	nol/dm ³	С	0.04 mol/	dm ³ D	0.0	3mol/dn	n ³	
s/04	/qp1												
мсс	ጋ 77.	d								($\langle ($		
12	The	e formula	a of ch	ina cl	ay (alu	minium	silicat	te) was sho	own in a	n old t	ook as /	Al ₂ O ₃ .2Si	O ₂ .2H ₂ O.
	Thi	s formula	a is sł	nown i	n a mo	dern bo	ok as	Al ₂ (OH) _x S	Si ₂ O _{y.}	\mathbf{N}			
	Wh	at are th	e valı	ies of	ر x and	in the	mode	m formula	?				
		x		У					\succ				
	A	2		4									
	B	2		5			$\mathbf{\lambda}$						
	C	: 4		3									
	D	4		5			$\overline{}$						
s/04	/qp1						*						
мсс	ጋ 78.	d			\geq								
5	The	e relative	mole	cular r	mass, A	r, of co	pper(I	 sulphate 	, CuSO4	, is 16).		
	The	e relative	mole	cular r	mass, A	/r, of wa	ter is	18.					
	Wh	at is the	perce	ntage	by mas	s of wa	ter in	copper(II)	sulphate	e crysta	lls, CuS0	O₄.5H₂O?	
	Α	<u>18 x 10</u> 160	0	в	<u>5 x 18</u> 160	<u>x 100</u> + 18	С	<u>18 x 100</u> 160 + 18	D	<u>5x</u> 160	<u>x 18 x 100</u>) + (5 x 18	<u>)</u> B)	
s/04	/qp1												
мсс	ጋ 79.	b											
13	124 sar	l g of pho ne tempe	ospho eratur	rus va e and	pour ha pressur	is the sa e.	ame v	olume as 7	1 g of ch	lorine	gas at th	le	
	Wh	at is the	formu	la of a	a molec	ule of pł	nosph	orus?					
	Α	P ₈	в	P ₄	с	P ₂	D	Ρ					

s/03/qp1

MCQ 80.b

12 Which sulphide contains the greatest mass of sulphur in a 10g sample?

sulphide	formula	mass of one mole/g			
Α	NiS	90			
В	FeS ₂	120			
с	MoS ₂	160			
D	PbS	239			

s/03/qp1

MCQ 81.d

5 A 25 cm³ sample of dilute sulphuric acid contains 0.025 moles of the acid.

What is the hydrogen ion concentration in the solution?

- A 0.25 mol/dm³
- B 0.50 mol/dm³
- C 1.00 mol/dm³
- D 2.00 mol/dm³

s/03/qp1