Online Classes : Megalecture@gmail.com CHEMISTRY CALCULATIONS WS 4 Moles & Volume

1 Consider the following reaction for the synthesis of methanol:

 $CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$

- **a.** What volume of H_2 reacts exactly with 2.50 dm³ of CO?
- **b.** What volume of CH₃OH is produced?
- **2** a. Calculate the number of moles in 250 cm³ of $O_2 @ r.t.p$.
 - **b.** Calculate the volume of 0.135 mol of $CO_2 @ r.t.p.$

3 Calculate the volume of carbon dioxide (@ *r.t.p.*) produced when 10.01 g of calcium carbonate decomposes according to the equation:

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

4 Potassium chlorate(V) decomposes when heated:

$$2KCIO_3(s) \rightarrow 2KCI(s) + 3O_2(g)$$

What mass of potassium chlorate(V) decomposes to produce 100.0 cm³ of oxygen gas measured @ *r.t.p*?

MEGA LECTURE For Live Online Classes megalecture@gmail.com

www.megalecture.com

Online Classes : Megalecture@gmail.com

5 What volume of SO₂ is obtained (measured @ *r.t.p*) when 1.000 kg of As₂S₃ is heated in oxygen?

$$2As_2S_3 + 9O_2 \rightarrow 2As_2O_3 + 6SO_2$$

6 a. Calculate the volume of CO_2 produced when 100 cm^3 of ethene burns in excess oxygen according to the equation:

 $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(I)$

b. Calculate the volume of NO produced when 2.0 dm³ of oxygen is reacted with excess ammonia according to the equation:

 $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$

- **7** Determine the number of moles present in each of the following at standard temperature and pressure:
 - **a.** $0.240 \text{dm}^3 \text{ of } \text{O}_2$ **d.** $400.0 \text{ cm}^3 \text{ of } \text{N}_2$
 - **b.** $2.00 \text{dm}^3 \text{ of } \text{CH}_4$ **e.** $250.0 \text{cm}^3 \text{ of } \text{CO}_2$
 - **c.** $0.100 \text{ dm}^3 \text{ of } \text{SO}_2$

CEDAR COLLEGE

CHEMISTRY CALCULATIONS WS 4 www.youtube.com/megalecture

Online Classes : Megalecture@gmail.com

- **8** Work out the volume of each of the following at standard temperature and pressure:
 - **a.** 0.100 mol C₃H₈ **d.** 0.8500 mol NH₃
 - **b.** 100.0 mol SO₃ **e.** 0.600 mol O₂
 - **c.** 0.270mol N₂
- **9** Sodium nitrate(V) decomposes according to the equation:

 $2NaNO_3(s) \rightarrow 2NaNO_2(s) + O_2(g)$

Calculate the volume (in cm^3) of oxygen produced (measured @ *r.t.p*) when 0.820 g of sodium nitrate(V) decomposes.

10 Tin reacts with nitric acid according to the equation:

$$Sn(s) + 4HNO_3(aq) \rightarrow SnO_2(s) + 4NO_2(g) + 2H_2O(l)$$

If 2.50g of tin are reacted with excess nitric acid what volume of NO₂ (in cm³) is produced @ r.t.p?

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com

Online Classes : Megalecture@gmail.com

11 Calculate the mass of sodium carbonate that must be reacted with excess hydrochloric acid to produce 100.0 cm³ of CO₂ @ *r.t.p.*

```
Na_2CO_3(s) + 2HCI(aq) \rightarrow 2NaCI(aq) + CO_2(g) + H_2O(I)
```

12 a. Oxygen (O_2) can be converted to ozone (O_3) by passing it through a silent electric discharge.

 $3O_2(g) \rightarrow 2O_3(g)$

If 300 cm³ of oxygen is used and 10% of the oxygen is converted to ozone, calculate the total volume of gas present at the end of the experiment.

b. Hydrogen reacts with chlorine according to the equation:

 $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$

What is the total volume of gas present in the container at the end of the experiment if 100 cm^3 of hydrogen is reacted with 200 cm^3 of chlorine?

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com