Online Classes : Megalecture@gmail.com

CHEMISTRY CALCULATIONS NS 4

Moles \& Volume

1 Consider the following reaction for the synthesis of methanol:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

a. What volume of H_{2} reacts exactly with $2.50 \mathrm{dm}^{3}$ of CO ?

$$
\text { V of } H_{2}=2 \times(V \text { of } C O)=5.0 \mathrm{dm}^{3}
$$

b. What volume of $\mathrm{CH}_{3} \mathrm{OH}$ is produced?

$$
2.5 \mathrm{dm}^{3}
$$

2 a. Calculate the number of moles in $250 \mathrm{~cm}^{3}$ of O_{2} @ r.t.p.

$$
x \text { in ot is } 24 \mathrm{dm}^{3} 250 \mathrm{~cm}^{3} \quad x=\frac{1}{24000} \times 250=0.0104 \mathrm{~mol}
$$

b. Calculate the volume of 0.135 mol of $\mathrm{CO}_{2} @$ r.t.p.

$$
V=0.135 \times 24 \mathrm{dm}^{3}=3.24 \mathrm{drn}^{3}
$$

3 Calculate the volume of carbon dioxide (@r.t.p.) produced when 10.01 g of calcium carbonate decomposes according to the equation:

$$
\begin{array}{rlrl}
\mathrm{MrCaCO}_{3} & =40.1+12+3(16) & \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
& =100.1 & \text { of CO}_{2} & =0.1 \times 24 \mathrm{dm}^{3} \\
\text { M of } \mathrm{CaCO}_{3} & =0.1 \mathrm{~mol} & & =2.4 \mathrm{dm}^{3} \\
\text { M of CO } & & =0.1 \text { mol } &
\end{array}
$$

4 Potassium chlorate (V) decomposes when heated:

$$
39.1+35.5+48=122.6
$$

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

What mass of potassium chlorate (V) decomposes to produce $100.0 \mathrm{~cm}^{3}$ of oxygen gas measured @r.t.p?
$\eta \mathrm{O}_{2}=100=0.00416$ mol produced. MaH of $\mathrm{KClO}_{3}=122.6 \times 0.00277$

$$
=0.339 \mathrm{~g} \text { reacted }
$$

$\eta \mathrm{KClO}_{3}=\frac{0.00416}{3} \times 2=0.00277 \mathrm{~mol}$

Online Classes : Megalecture@gmail.com

5 What volume of SO_{2} is obtained (measured @ r.t.p) when 1.000 kg of $\mathrm{As}_{2} \mathrm{~S}_{3}$ is heated in oxygen?

$$
\begin{array}{rlrl}
M r \mathrm{As}_{2} \mathrm{O}_{3} & =2(74.9)+3(32.1) & \begin{array}{rlr}
2 \mathrm{As}_{2} \mathrm{~S}_{3}+9 \mathrm{O}_{2} & \rightarrow 2 \mathrm{As}_{2} \mathrm{O}_{3}+6 \mathrm{SO}_{2} \\
& =246.1 & V o l \text { of } \mathrm{SO}_{2}
\end{array}=12.19 \times 24 \mathrm{dm}^{3} \\
\eta=\frac{1000}{246.1} & =4.064 \mathrm{~mol} & & \\
& & & \\
\eta \text { of } \mathrm{SO}_{2} & =\frac{492.56 \mathrm{dm}^{3}}{2} \times 6=12.19 \mathrm{~mol}
\end{array}
$$

6 a. Calculate the volume of CO_{2} produced when $100 \mathrm{~cm}^{3}$ of ethene burns in excess oxygen according to the equation:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\begin{array}{ll}
\mathrm{C}_{2} \mathrm{H}_{4} & : \mathrm{CO}_{2} \\
1 & : 2 \\
1 \mathrm{~mol} & : 2 \mathrm{~mol} \\
1 \mathrm{~cm}^{3} & : 2 \mathrm{~cm}^{3}
\end{array} \quad \vee \text { of } \mathrm{CO}_{2}=200 \mathrm{~cm}^{3}
$$

b. Calculate the volume of NO produced when $2.0 \mathrm{dm}^{3}$ of oxygen is reacted with excess ammonia according to the equation:

$$
\begin{aligned}
& \mathrm{O}_{2}: \mathrm{NO}^{4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})} \\
& \mathrm{S}^{2}: 4 \\
& 2: x
\end{aligned} \quad x=\frac{4 \times 2}{5}=1.6 \mathrm{dm}^{3}
$$

7 Determine the number of moles present in each of the following at standard temperature and pressure:
a. $0.240 \mathrm{dm}^{3}$ of O_{2} $10.7 \times 10^{-3} \mathrm{~mol}$
d. $\quad 400.0 \mathrm{~cm}^{3}$ of N_{2} $17.9 \times 10^{-3} \mathrm{~mol}$
b. $2.00 \mathrm{dm}^{3}$ of CH_{4}
89.2 mol
e. $\quad 250.0 \mathrm{~cm}^{3}$ of CO_{2} 11.16×10^{-3} wal.
c. $0.100 \mathrm{dm}^{3}$ of SO_{2}
4.46×10^{-3} mol.

Online Classes : Megalecture@gmail.com

8 Work out the volume of each of the following at standard temperature and pressure:
a. $\quad 0.100 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}$
$2.24 \mathrm{dm}^{3}$
d. $\quad 0.8500 \mathrm{~mol} \mathrm{NH}_{3}$ $19.04 \mathrm{dm}^{3}$
b. $\quad 100.0 \mathrm{~mol} \mathrm{SO}_{3}$
$2240 \mathrm{dm}^{3}$
e. $\quad 0.600 \mathrm{~mol} \mathrm{O}_{2}$
$13.44 \mathrm{dm}^{3}$
c. $0.270 \mathrm{~mol} \mathrm{~N}_{2}$
$6.048 \mathrm{dm}^{3}$

9 Sodium nitrate (V) decomposes according to the equation:

$$
2 \mathrm{NaNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

Calculate the volume (in cm^{3}) of oxygen produced (measured @ r.t.p) when 0.820 g of sodium nitrate(V) decomposes.
$\eta \mathrm{Na} \mathrm{NO} O_{3}=\frac{0.82}{85}=0.00964$ awol $\quad \mathrm{V}$ of $\mathrm{O}_{2}=0.00482 \times 24000 \mathrm{~cm}^{3} \mathrm{~mol}^{-}$
$\eta O_{2}=0.007592=0.00482$
ant
2

10 Tin reacts with nitric acid according to the equation:

$$
\mathrm{Sn}(\mathrm{~s})+4 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{SnO}_{2}(\mathrm{~s})+4 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

If 2.50 g of tin are reacted with excess nitric acid what volume of NO_{2} (in cm^{3}) is produced @ r.t.p?
η of $S n=\frac{2.5}{119}=0.021 \mathrm{~mol}$
$V N O_{2}=24080 \times 0.0842$
$=2.021 \mathrm{dm}^{3}$
$\eta \mathrm{NO}_{2}=4 \times 0.021$
$=0.084 \mathrm{~mol}$

Online Classes : Megalecture@gmail.com

11 Calculate the mass of sodium carbonate that must be reacted with excess hydrochloric acid to produce $100.0 \mathrm{~cm}^{3}$ of $\mathrm{CO}_{2} @ r . t . p$.

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \eta \text { of } \mathrm{CO}_{2}=\frac{100}{24000}=0.004167 \mathrm{~mol} . \\
& \eta \mathrm{Na}_{2} \mathrm{CO}_{3}=0.004167 \mathrm{~mol} \\
& \text { mass of } \mathrm{Na}_{2} \mathrm{CO}_{3}=0.004167(23 \times 2+12+48) \\
&=0.4417 \mathrm{~g} \text { is required }
\end{aligned}
$$

12 a. Oxygen $\left(\mathrm{O}_{2}\right)$ can be converted to ozone $\left(\mathrm{O}_{3}\right)$ by passing it through a silent electric discharge.

$$
3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g})
$$

If $300 \mathrm{~cm}^{3}$ of oxygen is used and 10% of the oxygen is converted to ozone, calculate the total volume of gas present at the end of the experiment.
10% of $300 \mathrm{~cm}^{3}=30 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& \mathrm{O}_{2}: \mathrm{O}_{3} \\
& 3: 2
\end{aligned}
$$

$30: 20 \rightarrow 20 \mathrm{~cm}^{3}+270$ that want med. $290 \mathrm{~cm}^{3} \mathrm{~m}$ all.
b. Hydrogen reacts with chlorine according to the equation:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

What is the total volume of gas present in the container at the end of the experiment if $100 \mathrm{~cm}^{3}$ of hydrogen is reacted with $200 \mathrm{~cm}^{3}$ of chlorine?
H_{2} is the limiting agent and Cl_{2} will Total initial $=100+200=300 \mathrm{~cm}^{3}$ be left in the tank at the end.

$$
\mathrm{H}_{2}: \mathrm{Cl}_{2}: 2 \mathrm{HCl}
$$

$$
100: 100: 200
$$

$$
\begin{aligned}
\text { Reacted } & =200 \mathrm{~cm}^{3} \\
\text { Produced } & =200 \mathrm{~cm}^{3} \\
\text { Leftover } & =(T . i-R)+P \\
& =300-200+200 \\
& =300 \mathrm{~cm}^{3}
\end{aligned}
$$

Reacted

WWW.megalecture.com

