Online Classes : Megalecture@gmail.com CHEMISTRY CALCULATIONS WS 4 Moles & Volume

1 Consider the following reaction for the synthesis of methanol:

 $CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$

a. What volume of H_2 reacts exactly with 2.50 dm³ of CO?

$$V$$
 of $H_2 = 2 \times (V$ of $CO) = 5.0$ dm³

b. What volume of CH₃OH is produced?

2.5 dm3

- **2** a. Calculate the number of moles in 250 cm³ of O₂ @ *r.t.p.* $1 \mod \frac{1}{2} 24 \dim^{3} \chi = \frac{1}{24000} \times 250 = 0.0104 \mod 100$
 - **b.** Calculate the volume of 0.135 mol of $CO_2 @ r.t.p.$

$$V = 0.135 \times 24 dm^3 = 3.24 dm^3$$

3 Calculate the volume of carbon dioxide (@ *r.t.p.*) produced when 10.01 g of calcium carbonate decomposes according to the equation:

 $\begin{aligned} &M_{r} CaCO_{3} = \frac{40.1 + 12 + 3(16)}{= 100.1} & CaCO_{3}(s) \Rightarrow CaO(s) + CO_{2}(g) \\ &= 100.1 & V of CO_{2} = 0.1 \times 24 dm^{3} \\ &M of CO_{2} = 0.1 mol & = 2.4 dm^{3} \end{aligned}$

4 Potassium chlorate(V) decomposes when heated:

89.1+35.5+48 = 122.6

$$2KCIO_3(s) \rightarrow 2KCI(s) + 3O_2(g)$$

What mass of potassium chlorate(V) decomposes to produce 100.0 cm³ of oxygen gas measured @ r.t.p? $\eta \ 0_2 = \frac{100}{24600} = 0.004/6 \text{ mol} \text{ produced} \cdot Man \ of \ KClo_3 = 122.6 \times 0.00277 \text{ mol} = 0.3399 \text{ g} \text{ reacted}.$ $\eta \ KClo_3 = \frac{0.004/6}{3} \times 2 = 0.00277 \text{ mol}$

CEDAR COLLEGE

CHEMISTRY CALCULATIONS WS 4 www.youtube.com/megalecture

Online Classes : Megalecture@gmail.com

5 What volume of SO₂ is obtained (measured @ *r.t.p*) when 1.000 kg of As₂S₃ is heated in oxygen?

$$Mr A_{s_2}O_3 = 2(74.9) + 8(82.1) = 24s_2S_3 + 9O_2 + 2As_2O_3 + 6SO_2$$

= 246.1 Vol of $SO_2 = 13.19 \times 24dm^3$
$$M = \frac{1000}{246.1} = 4.064 \text{ mol}$$

$$y \text{ of } SO_2 = \frac{4.064}{2} \times 6 = 12.19 \text{ mol}$$

6 a. Calculate the volume of CO_2 produced when $100cm^3$ of ethene burns in excess oxygen according to the equation:

$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(I)$$

$$C_2H_4: CO_2$$

 $1: 2 \quad Vof CO_2 = 200 \text{ cm}^3$
 $1 \text{ mol}: 2 \text{ mol}$
 $1 \text{ cm}^3: 2 \text{ cm}^3$

b. Calculate the volume of NO produced when 2.0 dm³ of oxygen is reacted with excess ammonia according to the equation:

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

 $O_2 : NO$ S : 4 $\chi = 4x2 = 1.6 \, dm^3$ $Q : \chi$ $\overline{5}$

- **7** Determine the number of moles present in each of the following at standard temperature and pressure:

 - c. $0.100 \text{ dm}^3 \text{ of } \text{SO}_2$ $4.46 \times 10^{-3} \text{ mol}.$

CEDAR COLLEGE

CHEMISTRY CALCULATIONS WS 4 www.youtube.com/megalecture

Online Classes : Megalecture@gmail.com

- 8 Work out the volume of each of the following at standard temperature and pressure:
 - a. 0.100 mol C₃H₈ d. 0.8500 mol NH₃ 19.04 dm3 2.24 dm3 **b.** 100.0 mol SO₃ 0.600 mol O₂ e. 13.44 dm 2240 dm3
 - **c.** 0.270mol N₂ 6.048 dm3
- 9 Sodium nitrate(V) decomposes according to the equation:

 $2NaNO_3(s) \rightarrow 2NaNO_2(s) + O_2(g)$

Calculate the volume (in cm³) of oxygen produced (measured @ r.t.p) when 0.820 g of sodium

 $\eta \ N_0 \ N_{0_3} = \frac{0.82}{85} = 0.00964 \ \text{and} \qquad \Rightarrow V \ \sigma_F \ 0_2 = 0.00482 \ \times 24000 \ \text{cm}^3 \text{mol}$ $\eta \ 0_2 = \frac{0.007592}{2} = 0.00482 \ \text{and} \qquad = 115.8 \ \text{cm}^3$

10 Tin reacts with nitric acid according to the equation:

$$Sn(s) + 4HNO_3(aq) \rightarrow SnO_2(s) + 4NO_2(g) + 2H_2O(l)$$

If 2.50g of tin are reacted with excess nitric acid what volume of NO_2 (in cm³) is produced @ r.t.p?

 η of $Sn = \frac{2.5}{119} = 0.021 \text{ mol}$ V NO2 = 24030 × 0.0842 = 2.021 dm3 MNO2 = 4x0.021 - 0.084 mol

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com

Online Classes : Megalecture@gmail.com

11 Calculate the mass of sodium carbonate that must be reacted with excess hydrochloric acid to produce 100.0 cm³ of CO₂ @ *r.t.p.*

 $Na_{2}CO_{3}(s) + 2HCI(aq) + 2NaCI(aq) + CO_{2}(g) + H_{2}O(l)$ $\eta q CO_{2} = \frac{160}{24000} = 0.004167 mol.$ $\eta Na_{2}CO_{3} = 0.004167 mol$ $mass of Na_{2}CO_{3} = 0.004167 (23x2 + 12 + 48)$ = 0.4417q is required

12 a. Oxygen (O₂) can be converted to ozone (O₃) by passing it through a silent electric discharge.

If 300 cm³ of oxygen is used and 10% of the oxygen is converted to ozone, calculate the total volume of gas present at the end of the experiment.

- $10\% \text{ of } 300 \text{ cm}^3 = 30 \text{ cm}^3$ 3 : 2 $30 : 20 \longrightarrow 20 \text{ cm}^3 \text{ cm}$ all. $29.0 \text{ cm}^3 \text{ cm}$ all.
 - b. Hydrogen reacts with chlorine according to the equation:

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

What is the total volume of gas present in the container at the end of the experiment if

100cm³ of hydrogen is reacted with 200cm³ of chlorine?

H₂ is the limiting agent and Cl₂ will be left in the tank at the end. H_a: Cl₂: 2 HCl I: I: 2 100: 100: 200 Reacted Produced

Total Initial =
$$100 + 200 = 300 \text{ cm}^3$$

Reacted = 200 cm^3
Produced = 200 cm^3
Leftover = $(7.i - R) + P$
= $300 - 200 + 200$
= 300 cm^3

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com

CHEMISTRY CALCULATIONS WS 4 www.youtube.com/megalecture