0620 MCQ Answers

1-A	$11-C$	$21-C$	$31-B$
2-D	$12-B$	$22-D$	$32-B$
3-D	$13-D$	$23-B$	$33-C$
4-B	$14-C$	$24-B$	$34-B$
5-C	$15-C$	$25-B$	$35-B$
6-B	$16-D$	$26-D$	
7-	$17-C$	$27-D$	
8-	$18-C$	$28-D$	
9-C	$19-D$	$29-D$	
10-D	$20-B$	$30-D$	

0620 Theory Answers

Question 1

(c) 0.104/0.026 [1]
$\mathrm{n}=4$

Question 2

(c) mass of hydrated magnesium sulfate $=1.476 \mathrm{~g}$
mass of barium sulfate formed $=1.398 \mathrm{~g}$
the mass of one mole of $\mathrm{BaSO} 4=233 \mathrm{~g}$
the number of moles of BaSO 4 formed $=0.006$ [1]
the number of moles of $\mathrm{MgSO} 4 . \mathrm{xH} 2 \mathrm{O}$ used in experiment $=$ 0.006 [1]
the mass of one mole of $\mathrm{MgSO4} . \mathrm{xH} 2 \mathrm{O}=1.476 / 0.006=246 \mathrm{~g}$ [1]
the mass of xH 2 O in one mole of $\mathrm{MgSO} 4 . \mathrm{xH} 2 \mathrm{O}=246-120=$
126 g [1]
$x=126 / 18=7$ [1]
if x given without method $=\max 1$
note: apply ecf but x must be an integer and less than 10

Question 3

(c) calculation:

Mr for $\mathrm{NaHCO}=84 \mathrm{~g} ; \mathrm{Mr}$ for $\mathrm{Na} 2 \mathrm{O}=62 \mathrm{~g} ; \mathrm{Mr}$ for $\mathrm{NaOH}=40$
g
Mr for $\mathrm{Na} 2 \mathrm{CO} 3=106 \mathrm{~g}$
(i) number of moles of NaHCO used $=3.36 / 84=0.04$ [1]
(ii) if residue is Na 2 O , number of moles of $\mathrm{Na} 2 \mathrm{O}=2.12 / 62$
$=0.034$ / 0.03
if residue is NaOH , number of moles of $\mathrm{NaOH}=2.12 / 40$
$=0.053 / 0.05$
if reside is Na 2 CO 3 , number of moles of $\mathrm{Na} 2 \mathrm{CO} 3=2.12 / 106$
$=0.02$ all three correct [2]
note: two correct = 1
(iii) equation 3 [1]
mole ratio 2:1 agrees with equation [1]

Question 4

(b) number of moles of HCl used $=0.04 \times 2=0.08$ number of moles CoCl 2 formed $=0.04$
number of moles CoCl 2.6 H 2 O formed $=0.04$
mass of one mole of $\mathrm{CoCl} 2.6 \mathrm{H} 2 \mathrm{O}=238 \mathrm{~g}$
maximum yield of $\mathrm{CoCl} 2.6 \mathrm{H} 2 \mathrm{O}=9.52 \mathrm{~g}[4]$
accept 9.5 g
mark ecf to moles of HCl
do not mark ecf to integers
to show that cobalt(II) carbonate is in excess
number of moles of HCl used $=0.08$ must use value above ecf
mass of one mole of $\mathrm{CoCO3}=119 \mathrm{~g}$
number of moles of $\mathrm{CoCO3}$ in 6.0 g of cobalt(II) carbonate $=$ $6.0 / 119=0.050$ [1]
reason why cobalt(II) carbonate is in excess $0.05>0.08 / 2$ [1]

Question 5

(d) (i) how many moles of H 2 SO 4 were added $=0.02 \times 0.3=$ 0.006 [1]
(ii) how many moles of NaOH were used $=0.04 \times 0.2=0.008$
[1]
(iii) sulfuric acid [1]
only mark ecf if in accord with 1:2 ratio and with values from (i) and (ii).
reason $0.006>0.008 / 2$ [1]
for ecf mark candidate must use 1:2 ratio in answer
(iv) less than 7 [1]

Question 6

(b) (i) 80 cm 3 of oxygen therefore 40 cm 3 of methane [1]
$40 / 60 \times 100=66.7 \%$ [1]
accept 66 \% and 67 \%
no ecf
(ii) add sodium hydroxide(aq) / alkali [1]
carbon dioxide dissolves, leaving methane [1]

Question 7

(b) (i) add up to 5.8 g [1]
(ii) moles of C atoms $=2.4 / 12=0.2$
moles of H atoms $=0.2 / 1=0.2$
moles of O atoms $=3.2 / 16=0.2$
all three correct = 2 [2]
two correct = 1
empirical formula CHO [1]
(iii) $116 / 29=4$ [1]

C4H4O4 [1]
correct formula with no working scores both marks.
(iv) $\mathrm{HOOCCH}=\mathrm{CHCOOH} / \mathrm{CH} 2=\mathrm{C}(\mathrm{COOH}) 2$ [2]

Question 8

(c) number of moles of FeSO4 used $=9.12 / 152=0.06$ [1]
number of moles of Fe 2 O 3 formed $=0.03^{*}$ [1]
mass of one mole of $\mathrm{Fe} 2 \mathrm{O}=160 \mathrm{~g}$ [1]
mass of iron(III) oxide formed $=0.03 \times 160=4.8 \mathrm{~g}$ [1]
number of moles of SO3 formed $=0.03$ [1]
volume of sulfur trioxide formed $=0.03 \times 24=0.72 \mathrm{dm} 3$ [1]
If mass of iron(III) oxide greater than 9.12 g , then only marks 1
and 2 available
Apply ecf to number of moles of $\mathrm{Fe} 2 \mathrm{O} 3^{*}$ when calculating volume of sulfur trioxide.
(b) (i) 100 [1]

56 ignore units in both cases [1]
(ii) 7.00 kg is $1 / 8$ of 56 [1]
$1 / 8$ of 100 kg is 12.5 kg [1]
Give both marks for correct answer without explanation.
Ignore missing units
but penalise wrong units
(b) (i) 7.7% [1]
(ii) for any number: equal number ratio [2]
for example 1:1 or 6:6
(iii) empirical formula is CH [1]
molecular formula is C6H6 [1]
no e.c.f., award of marks not dependent on (ii)

Question 11

(c) (i) 196 [1]
(ii) $112 / 196 \times 100$ [1]
= 57(.1)\% ACCEPT 57 to nearest whole number [1]
mark e.c.f. to (c)(i) provided percentage not greater than
100\%
ONLY ACCEPT 112/answer (c)(i) $\times 100$
otherwise [0]

Question 12

(ii) mass of one mole of $\mathrm{CaCO}=100$
number of moles of $\mathrm{CaCO}=0.3 / 100=0.003$ [1]
moles of $\mathrm{HCl}=5 / 1000 \times 1=0.005$ [1]
reagent in excess is CaCO 3 [1]
ecf from above
would need 0.006 moles of HCl
or hydrochloric acid only reacts with 0.0025 moles of CaCO 3
[1]
NOTE this mark needs to show recognition of the 1:2 ratio
(iii) mark ecf to (ii), that is from moles of limiting reagent in (ii) moles of CO2 $=0.005 \times 0.5 \times 24=0.06 \mathrm{dm} 3$ [1]
NOT cm 3 unless numerically correct. 60 cm 3
Ignore other units
NOTE If both number of moles integers then no ecf for (ii) and (iii)

Question 13

(a)
copper iron sulphur
composition by
mass/g
(4.80) (4.20) 4.8 [1]
number of moles
of atoms
0.0750 .0750 .15 [1]
simplest mole ratio
of atoms
112 [1]
[3]
The empirical formula is CuFeS2 [1]

Question 14

Question 18

(f) (i) $11.5 / 23=0.5[1]$
(ii) 0.25 [1]
conseq to (i)
...
(iii) $0.25 \times 32=8 \mathrm{~g}[1]$
conseq
(iv) 2.0 g [1]
only conseq to (iii) if answer to (iii) is less than 10
NB If (ii) is $0.3(125)$, no excess is possible, (iv) ZERO

Question 19

(c) (i) copper sulphate or anhydrous copper sulphate [I] accept "unhydrated"
NOT formula
(ii) goes blue or becomes hot or steam [I]
(iii) copper oxide [1]
(iv) $5 / 250=0.02$ moles
$\mathrm{Mr}=80$
$80 \times 0.02=1.6 \mathrm{~g}$
NB (iv) to be marked conseq to (iii)
Correct answer no working ONLY [1]

Question 20

(e) (i) percentage of oxygen $=31.6 \%$ [1]
(ii) calculate the number of moles of atoms for each element
number of moles of $\mathrm{Ti}=31.6 / 48=0.66$
number of moles of $0=31.6 / 16=1.98$ accept 2 [1]
both correct for one mark
(iii) the simplest whole number ratio for moles of atoms:

Fe: Ti: O
113 [1]
(iv) formula is FeTiO3 accept TiFeO3 [1]
must be whole numbers from (iii) or cancelled numbers from
(iii)
mark ecf throughout

Question 21

(ii) Volume ratio

Cx
$\mathrm{Hy}(\mathrm{g})+\mathrm{O} 2(\mathrm{~g}) \rightarrow \mathrm{CO} 2(\mathrm{~g})+\mathrm{H} 2 \mathrm{O}(\mathrm{l})$
20160100 all in cm3
185 mole ratio
C5
$\mathrm{H} 12+8 \mathrm{O} 2 \rightarrow 5 \mathrm{CO} 2+6 \mathrm{H} 2 \mathrm{O}$
For evidence of method (1)
for equation as above (2) [3]

Question 22

(c) (i) (to prove) all water driven off or evaporated or boiled / no water remains / to
make salt anhydrous (1)
(ii) $\mathrm{m} 1-\mathrm{m} 2=$ mass of water (1)
(calculate) moles of water AND moles of hydrated or
anhydrous salt (1)
1:1 ratio / should be equal (1) [3]

Question 23

(d) number of moles of O 2 formed $=0.096 / 24=0.004$ (1)
number of moles of H 2 O 2 in 40 cm 3 of solution $=0.004 \times 2=$ 0.008 (1)
concentration of the hydrogen peroxide in $\mathrm{mol} / \mathrm{dm} 3=0.008$ / $0.04=0.2$ (1) [3]

Question 24

8 (a) (i) (the number of particles which is equal to the number of atoms in) 12 g of carbon 12
or
the mass in grams which contains the Avogadro's constant number of particles
or
Avogadro's constant or 6 to 6.023×1023 of atoms / ions / molecules / electrons /
particles
or
(the amount of substance which has a mass equal to) its relative formula mass / relative
atomic mass / relative molecular mass in grams
or
(the amount of substance which has a volume equal to) 24 dm3 of a gas at RTP
[1]
(ii) (Avogadro's constant is the) number of particles / atoms / ions / molecules in one mole of
a substance
or
the number of carbon atoms in 12 g of $\mathrm{C}(12)$.
or
the number of particles / molecules in 24 dm 3 of a gas at RTP or
6 to 6.023×1023 (particles / atoms / ions / molecules /
electrons) [1]
(b) CH 4 and $\mathrm{SO} 2[1]$
$2 / 16=1 / 8$ or 0.125 moles of CH4 AND $8 / 64=1 / 8$ or 0.125 moles of SO2
(c) (i) $4.8 / 40=0.12$ moles of Ca
$3.6 / 18=0.2$ moles of H 2 O both correct [1]
(ii) Ca is in excess (no mark) (because 0.12 moles of Ca need) 0.24 moles / 4.32 g of H 2 O
to react [1]
there is not enough / there are 0.2 moles / 3.6 g of H 2 O [1] or
Ca is in excess (no mark) (because 0.2 moles / 3.6 g of water will react with)
0.1 moles $/ 4.0 \mathrm{~g}$ of Ca [1]
there is more than that / there are 0.12 moles $/ 4.8 \mathrm{~g}$ of Ca [1] or
Ca is in excess (no mark) because the mole ratio $\mathrm{Ca}: \mathrm{H} 2 \mathrm{O}$ is $3: 5$
/ mass ratio 4:3 [1]
which is bigger than the required mole ratio of 1:2 / mass ratio 10:9 [1]
or
Ca is in excess (no mark) because the mole ratio H2O:Ca is 5:3
/ mass ratio 3:4 [1]
which is smaller than the required mole ratio of 2:1 / mass ratio 9:10 [1]
(iii) $0.02 \times 40=0.8$ (g) [1]

Question 25

(d) volume of oxygen used $=150 \mathrm{~cm} 3$
volume of carbon dioxide formed $=100 \mathrm{~cm} 3$ [1] any equation of the combustion of an alkene
e.g. $2 \mathrm{C} 5 \mathrm{H} 10+15 \mathrm{O} 2 \quad 10 \mathrm{CO} 2+10 \mathrm{H} 2 \mathrm{O}$
formulae [1]
COND balancing

Question 26

(b) number of moles of $\mathrm{HCl}=0.020 \times 2.20=0.044$ [1]
number of moles of $\mathrm{LiOH}=0.044$
concentration of LiOH $=0.044 / 0.025=1.769(\mathrm{~mol} / \mathrm{dm} 3)[1]$
accept 1.75 to 1.77 need 2 dp
correct answer scores $=2$
(c) (for LiCl.2H2O)
mass of one mole $=78.5$ [1]
percentage water $=36 / 78.5 \times 100[1]$
45.9 so is LiCl .2 H 2 O [1]
only award the marks if you can follow the reasoning and it gives 45.9% of water
note: if correct option given mark this and ignore the rest of the response
allow: max 2 for applying a correct method to another hydrate, [1] for the method and [1] for
the correct value, working essential

Question 27

(e) if C 5 H 10 is given award 3 marks;;; [3]
if C 10 H 20 is given award 2 marks;;
if 1:7.5:5 / 2:15:10 is given award 2 marks;;
in all other cases a mark can be awarded for moles of O 2 (=
2.4/32 =) 0.075 AND moles
of CO2 (= 2.2/44 =) 0.05;
$2 \mathrm{C} 5 \mathrm{H} 10+15 \mathrm{O} 2 \rightarrow 10 \mathrm{CO} 2+10 \mathrm{H} 2 \mathrm{O}$ [1]
accept: multiples including fractions
allow: ecf for correct equation from any incorrect alkene

Question 28

(b) moles of $\mathrm{Fe}=51.85 / 56=0.926$ (0.93); [1]
moles of $\mathrm{O}=22.22 / 16=1.389$ (1.39); [1]
moles of $\mathrm{H} 2 \mathrm{O}=16.67 / 18=0.926(0.93)$; [1]
if given as 0.91 .40 .9
three of the above correct = [2]
two of the above correct = [1]
simplest whole number mole ratio $\mathrm{Fe}: \mathrm{O}: \mathrm{H} 2 \mathrm{O}$ is $2: 3: 2$ /
Fe2O3.2H2O; [1]
allow: ecf for a formula based on an incorrect whole number ratio

Question 29

8 (a) (i) (to avoid) carbon monoxide formation/so complete combustion occurs/avoid incomplete combustion So that CO2 is produced [1]
CO does not dissolve/react with alkali [1]
(ii) CO 2 is acidic [1]
(iii) volume of gaseous hydrocarbon 20 cm 3
volume of oxygen used $=90 \mathrm{cm3}$ [1]
volume of carbon dioxide formed $=60 \mathrm{~cm} 3$ [1]
no mark for 20 cm 3 of hydrocarbon.
(iv) $2 \mathrm{C} 3 \mathrm{H} 6(\mathrm{~g}) / 2 \mathrm{CxHy}(\mathrm{g})+9 \mathrm{O} 2(\mathrm{~g}) \rightarrow 6 \mathrm{CO} 2(\mathrm{~g})+6 \mathrm{H} 2 \mathrm{O}(\mathrm{I})[1]$

OR ... C3H6(g) $+9 / 2 \mathrm{O} 2(\mathrm{~g}) \rightarrow 3 \mathrm{CO} 2(\mathrm{~g})+3 \mathrm{H} 2 \mathrm{O}(\mathrm{I})$
C3H6 [1]
C3H6 can be given in the equation for the second mark

Question 30

7 (a) metal A is magnesium [1]
cond most reactive or fastest reaction [1] metal B is aluminium [1]
cond faster reaction after removal of oxide layer / it would give more hydrogen / aluminium
more reactive than zinc [1]
metal C is zinc [1]
zinc least reactive [1]
NOTE MAX [5]
If you encounter different reasoning which is correct, please award the appropriate marks.
(b) for magnesium and zinc same volume of hydrogen [1]
because both have valency of 2 / 1 mole of metal gives 1 mole of hydrogen / 1 mole of metal
reacts with 2 moles of acid [1]
bigger volume for aluminium because its valency is $3 / 1$ mole of metal gives 1.5 moles of
hydrogen / 1 mole of metal reacts with 3 moles of acid [1]
If you encounter different reasoning which is correct, please award the appropriate marks.
accept balanced equations
accept ionic charges as alternative to valency

Question 31

(d) (i) the reaction is exothermic / reaction produces heat/energy [1]
all the sodium hydroxide used up/neutralised / reaction has stopped [1]
(ii) adding colder acid / no more heat produced [1]
if not given in (d)(i) any comments such as "reaction has stopped" can gain mark
(iii) 1.33 / 1.3 / 1.3333 (mol/dm3) scores both marks [2] not 1.34
for a correct method -M 1 V 1 / moles of $\mathrm{NaOH}=0.02$ with an incorrect answer only [1]

Question 32

(c) if the final answer is between $86-89 \%$ award all 4
if the final answer is between 66-67\% award 3 marks (Mr of 32 must have been used)
for all other answers marks can be awarded using the mark
scheme as below and applying
ecf if necessary
number of moles of O 2 formed $=0.16 / 24=0.0067 / 0.00667$ or 1/150
number of moles of $\mathrm{Pb}(\mathrm{NO} 3) 2$ in the sample $=0.0133 / 0.013$ or 1/75
mass of one mole of $\mathrm{Pb}(\mathrm{NO} 3) 2=331 \mathrm{~g}$
mass of lead(II) nitrate in the sample $=4.4(1) \mathrm{g}$
percentage of lead(II) nitrate in sample $=88.3 \%$ (allow 88-89)
[4]
mark ecf in this question but not to simple integers
if mass of lead(II) nitrate >5.00 only marks 1 and 2 available If divides by 32 (not 24) only last 3 marks can score consequentially

Question 33

(a) $72 / 24=3$ and $28 / 14=2[1]$

Mg3N2 [1]
accept just formula for [2] even with incorrect or no working

NOT ecf
(b) $\mathrm{Al} 4 \mathrm{C} 3+12 \mathrm{H} 2 \mathrm{O}=4 \mathrm{Al}(\mathrm{OH}) 3+3 \mathrm{CH} 4[2]$

For AI4C3 ONLY [1]
(c) (i) silicon is limiting reagent [1]
0.07 moles of Si and $25 / 160=0.156$ moles of $\mathrm{Br} 2[1]$
because $0.14(2 \times 0.07)<0.156$ [1]
If 80 used to find moles of Br 2 the mark 1 and 3 still available arguments based on masses can be used
(ii) 0.07 [1]

NOT ecf

Question 34

(b) number of moles of NaOH used $=0.025 \times 2.24=0.056$ [1] maximum number of moles of Na 2 SO 4.10 H 2 O that could be formed $=0.028$ [1]
mass of one mole of $\mathrm{Na} 2 \mathrm{SO} 4.10 \mathrm{H} 2 \mathrm{O}=322 \mathrm{~g}$
maximum yield of sodium sulphate $-10-$ water $=9.02 \mathrm{~g}$ [1]
percentage yield $=42.8 \%$ [1]
mark ecf but NOT to simple integers
if ecf marking, mark to at least one place of decimals
if percentage $>100 \%$ then $3 / 4$ maximum

Question 35

(d) 100 g of fat react with 86.2 g of iodine

884 g of fat react with 762 g of iodine [1]
limit 762×2
one mole of fat reacts with $762 / 254$ moles of iodine molecules one mole of fat reacts with 3 moles of iodine molecules [1] number of double bonds in one molecule of fat is 3 [1] limit 6
consequential marking allowed provided the number of double bonds is an integer.

Question 36

(d) moles of $\mathrm{CH} 3-\mathrm{CH}=\mathrm{CH} 2$ reacted $=1.4 / 42=0.033$ [1] conseq
maximum moles of $\mathrm{CH} 3-\mathrm{CH}(\mathrm{I})-\mathrm{CH} 3$ that could be formed $=$ 0.033 [1]
conseq
maximum mass of 2-iodopropane that could be formed $=5.61$
g [1]
accept $170 \times 0.033=5.61$ and $170 \times 0.033333=5.67$
conseq unless greater than 100%
percentage yield 4.0/5.67 $\times 100=70.5 \%$ [1]
Do not mark consequently to a series of small integers. There has to be
a serious attempt to answer the question, then consequential marking is
appropriate.

Question 37

(d) mass of one mole of $\mathrm{CaSO} 4=136$
moles of CaSO 4 in $79.1 \mathrm{~g}=0.58$ accept 0.6 [1]
moles of H 2 O in $20.9 \mathrm{~g}=1.16$ accept 1.2 [1]
conseq $\mathrm{x}=2 \mathrm{x}$ given as an integer [1]
(c) $\mathrm{I} 2+3 \mathrm{Cl} 2=2 \mathrm{ICl} 3[2]$

For having either reactants or products correct ONLY [1]

Question 39

skip

Question 40

(c) (i) number of moles $\mathrm{CO} 2=0.24 / 24=0.01$
conseq number of moles of $\mathrm{CaCO3}$ and $\mathrm{MgCO3}=0.01$
conseq number of moles of $\mathrm{CaCO} 3=0.005$ [3]
(ii) Calculate the volume of hydrochloric acid, $1.0 \mathrm{~mole} / \mathrm{dm} 3$, needed to react with
one tablet.
number of moles of CaCO 3 and MgCO 3 in one tablet $=0.01$
Expect same as answer to (c)(i). NO marks to be awarded. Just mark
consequentially to this response
conseq number of moles of HCl needed
to react with one tablet $=0.02$
conseq volume of hydrochloric acid, 1.0 mole/dm3, needed to react with one
tablet $=0.02 \mathrm{dm} 3$ or 20 cm 3
[1]
[1]

Question 41

(c) number of moles of HCl in 50 cm 3 of acid, concentration $2.2 \mathrm{~mol} / \mathrm{dm} 3=0.11$ [1] maximum number of moles of CoCl 2.6 H 2 O which could be formed $=0.055$ [1] mass of 1 mole of $\mathrm{CoCl2} 2.6 \mathrm{H} 2 \mathrm{O}=238 \mathrm{~g}$ maximum yield of $\mathrm{CoCl} 2.6 \mathrm{H} 2 \mathrm{O}=13.09 \mathrm{~g}[1]$ percentage yield $=48.2 \%$ or ecf mass of CoCl 2.6 H 2 O above $/ 13.09 \times 100 \%$ to 1
dp [1]

Question 42

(b) (i) 14.3 [1]
(ii) $85.7 \div 12$ and $14.3 \div 1$ or 7.14 and 14.3 [1]
ratio 1:2 [1]
CH2 [1]
note: Award all 3 marks for correct answer
allow: alternative working e.g.
$85.7 \times 84 \div 100$ and $14.3 \times 84 \div 100$ or $71.988 / 72$ and
12/12.012 [1]
6:12 or ratio 1:2 [1]
CH2 [1]
(iii) C 6 H 12 [1]

Question 43

(iii) M1 = 2.07 Allow 2.1 or 2.0666 ... 7

M2 = 62.8.g
M3 $=(\mathrm{M} 2 / 152=) 0.41(3)$
M4 (=M1/M3) rounded to the nearest whole number $\times=5$ [4]

Question 44

(ii) number of moles of ethanoic acid $=0.1$ [1]
number of moles of ethanol $=0.12$ (0) [1]
the limiting reagent is ethanoic acid [1]
number of moles of ethyl ethanoate formed $=0.1$ [1]
maximum yield of ethyl ethanoate is 8.8 g [1]

Question 45

(ii) mass of AgNO needed is $170 \times 0.2 \times 0.1=3.4 \mathrm{~g}$ [2]

NOTE: if answer given is 34 they have omitted 0.1
ALLOW: (1) ecf
(iii) number of moles of $\mathrm{AgNO3}$ used $=0.02 \times 0.2=0.004$ [1]
number of moles of $\mathrm{Ag} 2 \mathrm{CrO4}$ formed $=0.002$ [1]
mass of one mole of $\mathrm{Ag} 2 \mathrm{CrO4}=332 \mathrm{~g}$
mass of $\mathrm{Ag} 2 \mathrm{CrO4}$ formed $=0.664 \mathrm{~g}$ [1]
NOTE: use ecf when appropriate

Question 46

(c) number of moles of CO 2 formed $=2.112 / 44=0.048$ [1] number of moles of H 2 O formed $=0.432 / 18=0.024$ [1]
$x=2$ and $y=1$ NOT: ecf from this line
formula is $2 \mathrm{PbCO} 3 . \mathrm{Pb}(\mathrm{OH}) 2 / \mathrm{Pb}(\mathrm{OH}) 2.2 \mathrm{PbCO} 3$ [1]

Question 47

(d) number of moles of HCl in 40 cm 3 of hydrochloric acid,
concentration $2.0 \mathrm{~mol} / \mathrm{dm3}=0.04 \times 2.0=0.08$ [1]
maximum number of moles of CO 2 formed $=0.04$ [1]
mass of one mole of CO2 $=44 \mathrm{~g}$ [1]
maximum mass of CO2 lost $=0.04 \times 44=1.76 \mathrm{~g}$ [1]

Question 48

(b) (i) (97.4 / $75=$) 1.3 and (2.6 / $1=$) 2.6; [1]
empirical formula AsH2; [1]
note: correct formula with no working $=[1]$
(ii) As2H4; [1]
(iii) H2As-AsH2 / AsH2-AsH2; [1]

Question 49

(d) number of moles of $\mathrm{Na} 2 \mathrm{SO} 3=3.15 / 126=0.025$ [1]
number of moles of SO2 formed $=0.025$ [1]
volume of SO2 $=0.025 \times 24=0.6 \mathrm{dm} 3 /$ litres or 600 cm 3 [1]
allow: ecf
for 1.6 g of SO2 [1] only
If used 22.4 max [2]
note: need correct units for last mark

Question 50

(c) number of moles of HCl used $=0.05 \times 2=0.1$ [1]
number of moles of SrCl 2.6 H 2 O which could be formed. $=$
0.05 [1]
mass of one mole of SrCl 2.6 H 2 O is 267 g
theoretical yield of $\mathrm{SrCl} 2.6 \mathrm{H} 2 \mathrm{O}=0.05 \times 267=13.35 \mathrm{~g}$ [1]
percentage yield $=6.4 / 13.35 \times 100=47.9 \%[1]$
accept: 48\%
allow: ecf

Question 51

