MOLES AND STOICHIOMETRY WS 1

1 Nickel makes up 20% of the total mass of a coin. The coin has a mass of 10.0 g .
How many nickel atoms are in the coin?
A 2.05×10^{22}
B 4.30×10^{22}
C 1.03×10^{23}
D 1.20×10^{24}

2 On collision, airbags in cars inflate rapidly due to the production of nitrogen.
The nitrogen is formed according to the following equations.

$$
\begin{aligned}
& 2 \mathrm{NaN}_{3} \rightarrow 2 \mathrm{Na}+3 \mathrm{~N}_{2} \\
& 10 \mathrm{Na}+2 \mathrm{KNO}_{3} \rightarrow \mathrm{~K}_{2} \mathrm{O}+5 \mathrm{Na}_{2} \mathrm{O}+\mathrm{N}_{2}
\end{aligned}
$$

How many moles of nitrogen gas are produced from 1 mol of sodium azide, NaN_{3} ?
A 1.5
B 1.6
C 3.2
D 4.0

3 What is the number of molecules in $500 \mathrm{~cm}^{3}$ of oxygen under room conditions?
A 1.25×10^{22}
B $\quad 1.34 \times 10^{22}$
C 3.0×10^{22}
D 3.0×10^{26}
4 Analytical chemists can detect very small amounts of amino acids, down to $3 \times 10^{-21} \mathrm{~mol}$. How many molecules of an amino acid $\left(M_{r}=200\right)$ would this be?
A 9
B 200
C 1800
D 360000

5 Which of these samples of gas contains the same number of atoms as 1 g of hydrogen ($M_{\mathrm{r}}: \mathrm{H}_{2}, 2$)?

A 22 g of carbon dioxide $\left(M_{\mathrm{r}}: \mathrm{CO}_{2}, 44\right)$
B 8 g of methane $\left(M_{\mathrm{r}}: \mathrm{CH}_{4}, 16\right)$
C 20 g of neon $\left(M_{\mathrm{r}}: \mathrm{Ne}, 20\right)$
D 8 g of ozone $\left(\mathrm{M}_{\mathrm{r}}: \mathrm{O}_{3}, 48\right)$
6 Which mass of gas would occupy a volume of $3 \mathrm{dm}^{3}$ at $25^{\circ} \mathrm{C}$ and 1 atmosphere pressure? [1 mol of gas occupies $24 \mathrm{dm}^{3}$ at $25^{\circ} \mathrm{C}$ and 1 atmosphere pressure.]

A $3.2 \mathrm{~g} \mathrm{O}_{2}$ gas
B $\quad 5.6 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2}$ gas
C $8.0 \mathrm{~g} \mathrm{SO}_{2}$ gas
D $\quad 11.0 \mathrm{~g} \mathrm{CO}_{2}$ gas

Page 2
7 Most modern cars are fitted with airbags. These work by decomposing sodium azide to liberate nitrogen gas, which inflates the bag.

$$
2 \mathrm{NaN}_{3} \rightarrow 3 \mathrm{~N}_{2}+2 \mathrm{Na}
$$

A typical driver's airbag contains 50 g of sodium azide.
Calculate the volume of nitrogen this will produce at room temperature.
A $9.2 \mathrm{dm}^{3}$
B $\quad 13.9 \mathrm{dm}^{3}$
C $27.7 \mathrm{dm}^{3}$
D $72.0 \mathrm{dm}^{3}$
$8 \quad \mathrm{~N}_{2} \mathrm{O}_{4}$ is a poisonous gas. It can be disposed of safely by reaction with sodium hydroxide.

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{NaNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

What is the minimum volume of $0.5 \mathrm{moldm}^{-3} \mathrm{NaOH}(\mathrm{aq})$ needed to dispose of 0.02 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$?
A $8 \mathrm{~cm}^{3}$
B $\quad 12.5 \mathrm{~cm}^{3}$
C $40 \mathrm{~cm}^{3}$
D $80 \mathrm{~cm}^{3}$

9 A household bleach contains sodium chlorate(I), NaClO , as its active ingredient. The concentration of NaClO in the bleach can be determined by reacting a known amount with aqueous hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$.

$$
\mathrm{NaClO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

When $25.0 \mathrm{~cm}^{3}$ of bleach is treated with an excess of aqueous $\mathrm{H}_{2} \mathrm{O}_{2}, 0.0350 \mathrm{~mol}$ of oxygen gas is given off.

What is the concentration of NaClO in the bleach?
A $8.75 \times 10^{-4} \mathrm{moldm}^{-3}$
B $0.700 \mathrm{moldm}^{-3}$
C $0.875 \mathrm{moldm}^{-3}$
D $1.40 \mathrm{~mol} \mathrm{dm}^{-3}$
10 Titanium(IV) oxide, TiO_{2}, is brilliantly white and much of the oxide produced is used in the manufacture of paint.

What is the maximum amount of TiO_{2} obtainable from 19.0 tonnes of the ore ilmenite, FeTiO_{3} ?
A 10.0 tonnes
B 12.7 tonnes
C 14.0 tonnes
D 17.7 tonnes

11 The foul smell that skunks spray is due to a number of thiols, one of which is methanethiol, $\mathrm{CH}_{3} \mathrm{SH}$, which burns as follows.

$$
\mathrm{CH}_{3} \mathrm{SH}+3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

A sample of $10 \mathrm{~cm}^{3}$ of methanethiol was exploded with $60 \mathrm{~cm}^{3}$ of oxygen.
What would be the final volume of the resultant mixture of gases when cooled to room temperature?
A $20 \mathrm{~cm}^{3}$
B $30 \mathrm{~cm}^{3}$
C $50 \mathrm{~cm}^{3}$
D $70 \mathrm{~cm}^{3}$

Page 3

12 The reaction between aluminium powder and anhydrous barium nitrate is used as the propellant in some fireworks. The metal oxides and nitrogen are the only products.

Which volume of nitrogen, measured under room conditions, is produced when 0.783 g of anhydrous barium nitrate reacts with an excess of aluminium?
A $46.8 \mathrm{~cm}^{3}$
B $72.0 \mathrm{~cm}^{3}$
C $\quad 93.6 \mathrm{~cm}^{3}$
D $\quad 144 \mathrm{~cm}^{3}$

13 The amount of calcium ions in a sample of natural water can be determined by using an ionexchange column as shown in the diagram.

A $50 \mathrm{~cm}^{3}$ sample of water containing dissolved calcium sulphate was passed through the ionexchange resin. Each calcium ion in the sample was exchanged for two hydrogen ions. The resulting acidic solution collected in the flask required $25 \mathrm{~cm}^{3}$ of $1.0 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ potassium hydroxide for complete neutralisation.

What was the concentration of the calcium sulphate in the original sample?
A $2.5 \times 10^{-3} \mathrm{moldm}^{-3}$
B $1.0 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
C $2.0 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
D $4.0 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
14 Tetraethyl lead, $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$, has been used as a petrol additive.
What is the percentage by mass of carbon in tetraethyl lead?
A 10.2
B 14.9
C 29.7
D 32.0

15 A piece of rock has a mass of 2.00 g . It contains calcium carbonate, but no other basic substances. It neutralises exactly $36.0 \mathrm{~cm}^{3}$ of $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid.

What is the percentage of calcium carbonate in the 2.00 g piece of rock?
A 22.5%
B 45.0\%
C 72.0%
D 90.1%

16 In China, the concentration of blood glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is measured in mmol / l. In Pakistan, the concentration of blood glucose is measured in $\mathrm{mg} / \mathrm{d} l$.

The unit l is a litre $\left(1 \mathrm{dm}^{3}\right)$. The unit $\mathrm{d} l$ is a decilitre $\left(0.1 \mathrm{dm}^{3}\right)$.
A blood glucose concentration of $18.5 \mathrm{mmol} / l$ indicates a health problem.
What is $18.5 \mathrm{mmol} / l$ converted to $\mathrm{mg} / \mathrm{d} l$?
A $33.3 \mathrm{mg} / \mathrm{d} l$
B $\quad 178 \mathrm{mg} / \mathrm{d} l$
C $333 \mathrm{mg} / \mathrm{d} l$
D $3330 \mathrm{mg} / \mathrm{d} l$

17 A 0.005 mol sample of anhydrous calcium carbonate was completely thermally decomposed to give $100 \mathrm{~cm}^{3}$ of gas measured at a certain temperature and pressure.

In a separate experiment carried out at the same temperature and pressure, a 0.005 mol sample of anhydrous calcium nitrate was completely thermally decomposed. The volume of gaseous products was measured.

What total volume of gaseous products was produced from the calcium nitrate?
A $50 \mathrm{~cm}^{3}$
B $\quad 100 \mathrm{~cm}^{3}$
C $200 \mathrm{~cm}^{3}$
D $250 \mathrm{~cm}^{3}$

18 Which mass of urea, $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$, contains the same mass of nitrogen as 101.1 g of potassium nitrate?
A 22 g
B $\quad 30 \mathrm{~g}$
C $\quad 44 \mathrm{~g}$
D $\quad 60 \mathrm{~g}$

19 Anhydrous magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, will decompose when heated, giving a white solid and a mixture of two gases X and Y .

Y is oxygen.
What is the ratio $\frac{\text { mass of } X \text { released }}{\text { mass of } Y \text { released }}$?
A $\frac{1}{0.174}$
B $\frac{1}{0.267}$
C $\frac{1}{0.348}$
D $\frac{1}{3.43}$

