Page 1

MOLES AND STOICHIOMETRY WS 1

1										
	Nicł	Nickel makes up 20% of the total mass of a coin. The coin has a mass of 10.0 g.								
	Hov	How many nickel atoms are in the coin? 2.05×10^{22} B 4.30×10^{22} C 1.03×10^{23} D 1.20×10^{24}								2 (0.033 ml) 7
	A	2.05×10^{22}	в	4.30×10^{22}	С	1.03×10^{23}	D	1.20×10^{24}	井 Atoms = 0.033 X = 2044 X	6.62 × 10 ²³
2	On	collision, airbags	s in (cars inflate ra	apidly di	ue to the prod	uction	of nitrogen.		
	The	The nitrogen is formed according to the following equations.								
		2	Nal	$N_3 \rightarrow 2Na + 3$	BN ₂	1.5 + 0.1 =	1.6 m	ก		
$2\text{NaN}_{3} \rightarrow 2\text{Na} + 3\text{N}_{2}$ $1.6 + 0.1 = 1.6 \text{ mol}$ $10\text{Na} + 2\text{KNO}_{3} \rightarrow \text{K}_{2}\text{O} + 5\text{Na}_{2}\text{O} + \frac{1}{\text{K}_{2}}$ How many moles of nitrogen gas are produced from 1 mol of sodium azide, NaN ₃ ?										
									aN₃?	
	Α	1.5	В	1.6	С	3.2	D	4.0		
3	What is the number of molecules in 500 cm ³ of oxygen under room conditions?									
	A	1.25 x 10 ²²		$\# 0_2 \text{ meleon}$	$Ju = \eta$	хL				
	В	1.34 x 10 ²²			(A -1 -	0 × 6.02×10-23				
	c	3.0 x 10 ²²			= 1.3	15×1022				
	D	3.0 x 10 ²⁶				They're try	mg	Tu		
4	confine you.									
4		halytical chemists can detect very small amounts of amino acids, down to 3×10^{-21} mol. we many molecules of an amino acid ($M_r = 200$) would this be? A form $\pi \neq 0$ × L								
	A	9 B 2	00	C 18	800	D 360 0	00		= 3×10-21. = 1806	X 6.02 × 1023
	Which of these samples of gas contains the same number of atoms as 1g of hydrogen									
5			mpl	es of gas c	ontains	the same n	umber	of atoms as		en
5	(<i>M</i> _r	: H ₂ , 2)?	-	-		the same number $\eta_{H_2} = \frac{1}{2}$				en
5	(<i>M</i> _r A	: H ₂ , 2)? 22 g of carbon d	ioxi	de (<i>M</i> _r : CO ₂ ,		$\eta_{H_2} = \frac{1}{2}$	ĵ = 0.9	5 mcl.		en
5	(<i>M</i> _r A B	: H ₂ , 2)? 22 g of carbon d 8 g of methane (ioxio (<i>M</i> r :	de (<i>M</i> _r : CO ₂ , CH ₄ , 16)			ĵ = 0.9	5 mcl.		en
5	(<i>M</i> _r A B C	: H ₂ , 2)? 22 g of carbon d 8 g of methane (20 g of neon (<i>M</i> _r	ioxi (<i>M</i> r : : N	de (<i>M</i> _r : CO ₂ , CH ₄ , 16) e, 20)	44)	$\eta_{H_2} = \frac{1}{2}$ $\eta_{Hatoms} =$	ĵ = 0.9	5 mcl.		en
	(<i>M</i> _r A B C D	: H ₂ , 2)? 22 g of carbon d 8 g of methane (20 g of neon (<i>M</i> _r 8 g of ozone (<i>M</i> _r	ioxic (<i>M</i> r : : No : O	de (<i>M</i> _r : CO ₂ , CH ₄ , 16) e, 20) ₃ , 48)	44) 1 = <u>20</u> <u>20</u>	$\eta_{H_2} = \frac{1}{2}$ $\eta_{HAYONUS} =$ $= 1 \text{ mol}.$	j = 0.9 0.5×2 =	5 mol. : <u>1 mol.</u>	1g of hydrog	
5	(<i>M</i> _r A B C D Wh	: H ₂ , 2)? 22 g of carbon d 8 g of methane (20 g of neon (<i>M</i> _r	ioxi (<i>M</i> r : : N : O : O	de (<i>M</i> _r : CO ₂ , CH ₄ , 16) e, 20) ₃ , 48) γ uld occupy a	44) $\int \frac{1}{2} \frac{20}{20}$ a volum	$\eta_{H_2} = \frac{1}{2}$ $\eta_{HMoms} =$ $= 1 \text{ mc}$ $e \text{ of } 3 \text{ dm}^3 \text{ at } 2$	1	5 mດີ. : <u>1 mດີ.</u> and 1 atmosp sure.]	1g of hydrog	
	(<i>M</i> _r A B C D Wh	: H ₂ , 2)? 22 g of carbon d 8 g of methane (20 g of neon (<i>M</i> _r 8 g of ozone (<i>M</i> _r nich mass of gas	ioxid (<i>M</i> _r : : N : O wo ies	de $(M_r : CO_2, CH_4, 16)$ e, 20) 3, 48) uld occupy a 24 dm ³ at 25 5.2 $ 32 = 0.1$	44)] ⁻ 20 20 a volum 5°C and m()	$\eta_{H_2} = \frac{1}{2}$ $\eta_{HMoms} =$ $= 1 \text{ mc}$ $e \text{ of } 3 \text{ dm}^3 \text{ at } 2$	1	5 mດີ. : <u>1 mດີ.</u> and 1 atmosp sure.]	1g of hydrog	
	(<i>M</i> _r A B C D Wh [1 n	: H ₂ , 2)? 22 g of carbon d 8 g of methane (20 g of neon (<i>M</i> _r 8 g of ozone (<i>M</i> _r nich mass of gas nol of gas occup	ioxic (<i>M</i> _r : N : O wo ies	de $(M_r : CO_2, CH_4, 16)$ e, 20) 3, 48) uld occupy a 24 dm ³ at 25 5.2 $ 32 = 0.1$ 5.6 $ 32 = 0.2$	44)] [±] 20 20 a volum 5°C and m() m()	$\eta_{H_2} = \frac{1}{2}$ $\eta_{HMoms} =$ $= 1 \text{ mc}$ $e \text{ of } 3 \text{ dm}^3 \text{ at } 2$	1	5 mcl. : <u>1 mcl.</u> and 1 atmosp	1g of hydrog	
	(<i>M</i> r A B C D Wh [1 n A	: H ₂ , 2)? 22 g of carbon d 8 g of methane (20 g of neon (<i>M</i> _r 8 g of ozone (<i>M</i> _r nich mass of gas nol of gas occup 3.2 g O ₂ gas	ioxic (<i>M</i> _r : N : O wo ies	de $(M_r : CO_2, CH_4, 16)$ e, 20) 3, 48) uld occupy a 24 dm ³ at 25 5.2 $ 32 = 0.1$ 5.6 $ 32 = 0.2$	44)] [±] 20 20 a volum 5°C and m() m()	$\eta_{H_2} = \frac{1}{2}$ $\eta_{HMoms} =$ $= 1 \text{ mc}$ $e \text{ of } 3 \text{ dm}^3 \text{ at } 2$	1	5 mດີ. : <u>1 mດີ.</u> and 1 atmosp sure.]	1g of hydrog	
	(<i>M</i> r A B C D Wh [1 n A B	: H ₂ , 2)? 22 g of carbon d 8 g of methane (20 g of neon (<i>M</i> r 8 g of ozone (<i>M</i> r nich mass of gas nol of gas occup 3.2 g O ₂ gas 5.6 g N ₂ gas	ioxid M _r : N : O wo	de $(M_r : CO_2, CH_4, 16)$ e, 20) 3, 48) uld occupy a 24 dm ³ at 25 5.2 $ 32 = 0.1$	44)] [±] 20 20 a volum 5°C and m() m()	$\eta_{H_2} = \frac{1}{2}$ $\eta_{HMoms} =$ $= 1 \text{ mc}$ $e \text{ of } 3 \text{ dm}^3 \text{ at } 2$	1	5 mດີ. : <u>1 mດີ.</u> and 1 atmosp sure.]	1g of hydrog	
	(<i>M</i> r A B C D Wh [1 n A B C D	: H ₂ , 2)? 22 g of carbon d 8 g of methane (20 g of neon (<i>M</i> r 8 g of ozone (<i>M</i> r nich mass of gas nol of gas occup 3.2 g O ₂ gas 5.6 g N ₂ gas 8.0 g SO ₂ gas	ioxia (<i>M</i> _r : N : O wo ies	de $(M_r : CO_2, CH_4, 16)$ e, 20) 3, 48) uld occupy a 24 dm ³ at 25 5.2 $ 32 = 0.1$ 5.6 $ 32 = 0.2$	44)] [±] 20 20 a volum 5°C and m() m()	$\eta_{H_2} = \frac{1}{2}$ $\eta_{HMoms} =$ $= 1 \text{ mc}$ $e \text{ of } 3 \text{ dm}^3 \text{ at } 2$	1	5 mດີ. : <u>1 mດີ.</u> and 1 atmosp sure.]	1g of hydrog	
6	(<i>M</i> r A B C D Wh [1 n A B C D	: H_2 , 2)? 22 g of carbon d 8 g of methane (20 g of neon (M_r 8 g of ozone (M_r inch mass of gas nol of gas occup 3.2 g O_2 gas 5.6 g N_2 gas 8.0 g S O_2 gas 11.0 g C O_2 gas ww.megalecture.com	ioxid (<i>M</i> _r : N : O wo ies	de $(M_r : CO_2, CH_4, 16)$ e, 20) 3, 48) uld occupy a 24 dm ³ at 25 3.2/32 = 0.1 5.6/28 = 0.2 $8/_{64.1} = 0.125$	44)] [±] 20 20 a volum 5°C and m() m()	$\eta_{H_2} = \frac{1}{2}$ $\eta_{HMoms} =$ $= 1 \text{ mc}$ $e \text{ of } 3 \text{ dm}^3 \text{ at } 2$	1	5 mດີ. : <u>1 mດີ.</u> and 1 atmosp sure.]	1g of hydrog	
6	(<i>M</i> , A B C D Wh [1 n A B C D	: H ₂ , 2)? 22 g of carbon d 8 g of methane (20 g of neon (<i>M</i> r 8 g of ozone (<i>M</i> r ich mass of gas nol of gas occup 3.2 g O ₂ gas 5.6 g N ₂ gas 8.0 g SO ₂ gas 11.0 g CO ₂ gas	ioxid (<i>M</i> _r : N : O wo ies	de $(M_r : CO_2, CH_4, 16)$ e, 20) 3, 48) uld occupy a 24 dm ³ at 25 9.2 32 = 0.1 5.6 38 = 0.2 $8 _{64.1} = 0.125$ RE	44)] [±] 20 20 a volum 5°C and m() m()	$\eta_{H_2} = \frac{1}{2}$ $\eta_{HMoms} =$ $= 1 \text{ mc}$ $e \text{ of } 3 \text{ dm}^3 \text{ at } 2$	1	and 1 atmosp sure.] = $\frac{3}{24} = 0.1$	1g of hydrog	,

Online Classes : Megalecture@gmail.com

Page 2

Most modern cars are fitted with airbags. These work by decomposing sodium azide to liberate 7 nitrogen gas, which inflates the bag.

NAHZ: NA 2:3 $2NaN_3 \rightarrow 3N_2 + 2Na$ 0.769 : 1.534 mol A typical driver's airbag contains 50 g of sodium azide. , × 24 dm³ mol Calculate the volume of nitrogen this will produce at room temperature. 27.69 dm3 **A** 9.2 dm³ 13.9 dm³ C 27.7 dm³ 72.0 dm³ В D N₂O₄ is a poisonous gas. It can be disposed of safely by reaction with sodium hydroxide. $\eta_{N_001} = 2 \times 0.6\lambda$

$$N_2O_4(g) + 2NaOH(aq) \rightarrow NaNO_3(aq) + NaNO_2(aq) + H_2O(I)$$

What is the minimum volume of 0.5 mol dm⁻³ NaOH(aq) needed to dispose of 0.02 mol of N₂O₄? $V = \frac{\gamma}{c} = \frac{0.04}{0.5}$

A household bleach contains sodium chlorate(I), NaCIO, as its active ingredient. The 9 concentration of NaClO in the bleach can be determined by reacting a known amount with aqueous hydrogen peroxide, H₂O₂.

$$NaClO(aq) + H_2O_2(aq) \rightarrow NaCl(aq) + O_2(g) + H_2O(I)$$

When 25.0 cm³ of bleach is treated with an excess of aqueous H_2O_2 , 0.0350 mol of oxygen gas is given off. $C = \frac{0.035}{0.025} = 1.4 \, dm^{-3}$

What is the concentration of NaClO in the bleach?

8

- **A** $8.75 \times 10^{-4} \, \text{mol} \, \text{dm}^{-3}$ FeTiOz: TiOz 0.700 mol dm⁻³ В MY: 151.7 : 79.9 0.875 mol dm⁻³ С **D** 1.40 mol dm⁻³ 19 く
- Titanium(IV) oxide, TiO₂, is brilliantly white and much of the oxide produced is used in the 10 manufacture of paint. 7=10

What is the maximum amount of TiO₂ obtainable from 19.0 tonnes of the ore ilmenite, FeTiO₃?

10.0 tonnes В 12.7 tonnes С 14.0 tonnes D 17.7 tonnes

11 The foul smell that skunks spray is due to a number of thiols, one of which is methanethiol, CH₃SH, which burns as follows.

$$CH_3SH + 3O_2 \rightarrow CO_2 + SO_2 + 2H_2O$$

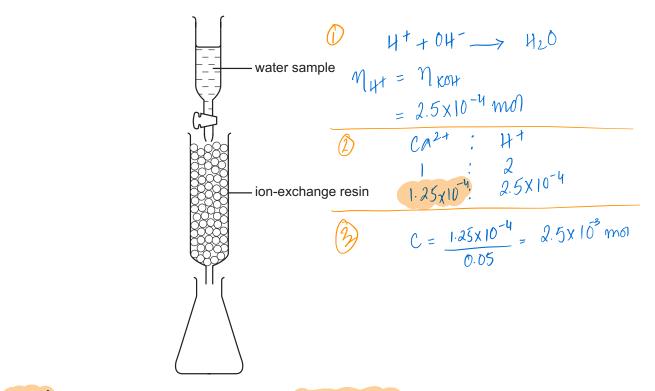
A sample of 10 cm³ of methanethiol was exploded with 60 cm³ of oxygen.

What would be the final volume of the resultant mixture of gases when cooled to room temperature?

A 20 cm³ 30 cm³ С $50\,\mathrm{cm}^3$ **D** $70 \, \text{cm}^3$ В

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com


MOLES & STOICHIOMETRY WS 1

= 0.08

- $BA(NO_3)_2$: N_2 $Online Classes): Megalecture @.gmail.com Vol. N_2 3m \times 24$ $Page(3.3) = \eta_N_2$
 - **12** The reaction between aluminium powder and anhydrous barium nitrate is used as the propellant in some fireworks. The metal oxides and nitrogen are the only products.

Which volume of nitrogen, measured under room conditions, is produced when 0.783 g of anhydrous barium nitrate reacts with an excess of aluminium?

- **A** 46.8 cm³ **B** 72.0 cm³ **C** 93.6 cm³ **D** 144 cm³
- **13** The amount of calcium ions in a sample of natural water can be determined by using an ion-exchange column as shown in the diagram.

A 50 cm³ sample of water containing dissolved calcium sulphate was passed through the ionexchange resin. Each calcium ion in the sample was exchanged for two hydrogen ions. The resulting acidic solution collected in the flask required 25 cm³ of 1.0×10^{-2} mol dm⁻³ potassium hydroxide for complete neutralisation.

What was the concentration of the calcium sulphate in the original sample?

- **A** $2.5 \times 10^{-3} \, \text{mol} \, \text{dm}^{-3}$
- $\textbf{B} \quad 1.0\times 10^{-2}\,mol\,dm^{-3}$
- $\textbf{D} \quad 4.0\times 10^{-2}\,mol\,dm^{-3}$

14 Tetraethyl lead, $Pb(C_2H_5)_4$, has been used as a petrol additive.

What is the percentage by mass of carbon in tetraethyl lead?

A 10.2 B 14.9 C 29.7 D 32.0

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com

MOLES & STOICHIOMETRY WS 1

12×8 29×4 + 207.2

Online Classes : Megalecture@gmail.com

Page 4

15 A piece of rock has a mass of 2.00 g. It contains calcium carbonate, but no other basic substances. It neutralises exactly 36.0 cm³ of 0.500 mol dm⁻³ hydrochloric acid.

What is the percentage of calcium carbonate in the 2.00 g piece of rock?

- **A** 22.5% **B** 45.0% **C** 72.0% **D** 90.1%
- **16** In China, the concentration of blood glucose, $C_6H_{12}O_6$, is measured in mmol / *l*. In Pakistan, the concentration of blood glucose is measured in mg/d*l*.

The unit *l* is a litre (1 dm^3) . The unit d*l* is a decilitre (0.1 dm^3) .

A blood glucose concentration of 18.5 mmol/l indicates a health problem.

What is 18.5 mmol/l converted to mg/dl?

A 33.3 mg/dl B 178 mg/dl C 333 mg/dl D 3330 mg/dl

17 A 0.005 mol sample of anhydrous calcium carbonate was completely thermally decomposed to give 100 cm³ of gas measured at a certain temperature and pressure.

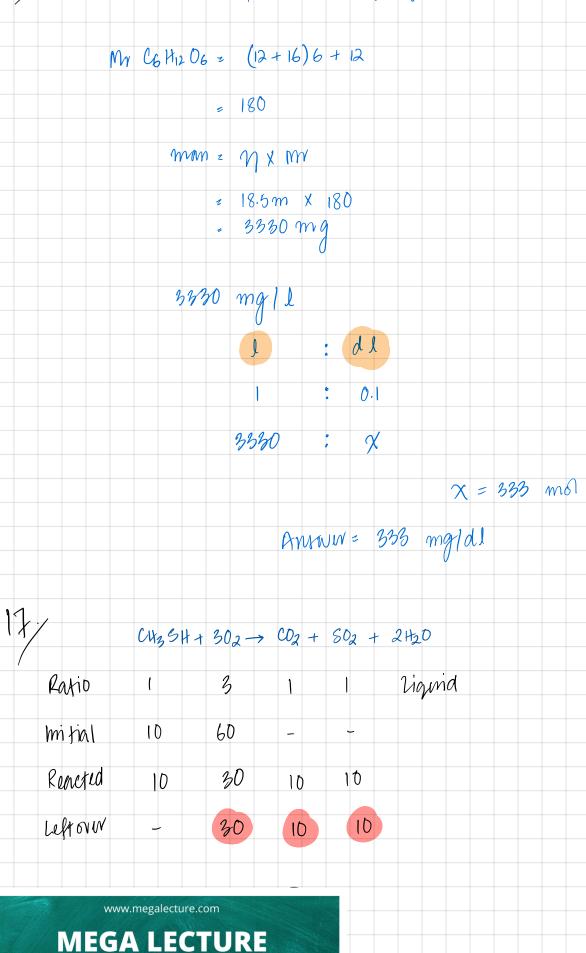
In a separate experiment carried out at the same temperature and pressure, a 0.005 mol sample of anhydrous calcium nitrate was completely thermally decomposed. The volume of gaseous products was measured.

What total volume of gaseous products was produced from the calcium nitrate?

A 50 cm³ В 100 cm³ **C** 200 cm^3 **D** $250 \, \text{cm}^3$,101.1 18 Which mass of urea, CO(NH₂)₂, contains the same mass of nitrogen as 101.1g of potassium 0.6 ml will have 149 of H nitrate? man of 0.5 ms of $C0(NH_2)_2 = 0.5 \times 60 = 309$ 149 01 30 a **A** 22g B Anhydrous magnesium nitrate, $Mg(NO_3)_2$, will decompose when heated, giving a white solid and 19 a mixture of two gases X and Y. Y is oxygen. What is the ratio mass of X released ? mass of Y released $\frac{1}{0.174} \quad \begin{array}{c} \mathbf{B} & \frac{1}{0.267} & \mathbf{C} & \frac{1}{0.348} & \mathbf{D} & \frac{1}{3.} \\ Mg(NO_3)_2 \longrightarrow MgO + 2NO_2 + \frac{1}{2}O_2 \\ Q2g : 16g \end{array}$

$$\frac{92}{16} = \frac{5.75}{1} \times \frac{1/5.75}{1/5.75} = \frac{1}{0.174}$$

www.megalecture.com


MEGA LECTURE For Live Online Classes megalecture@gmail.com

MOLES & STOICHIOMETRY WS 1

16./

For Live Online Classes megalecture@gmail.com