Online Classes : Megalecture@gmail.com CHEMISTRY CALCULATIONS WS 3 Moles & Solutions

1 If 10.00 g of NaOH is dissolved in water and the volume is made up to 200.0 cm³, calculate the concentration in moldm⁻³ and gdm⁻³.

² Calculate the number of moles of HCl present in 50.0 cm³ of 2.00 moldm⁻³ hydrochloric acid.

- ³ Calculate the number of moles of chloride ions present in 50.0 cm³ of a 0.0500 moldm⁻³ solution of iron(III) chloride (FeCl₃) and the total concentration of all the ions present.
- 4 Sulfuric acid is titrated against 25.00cm³ of 0.2000 moldm⁻³ sodium hydroxide solution; 23.20 cm³ of sulfuric acid is required for neutralisation. Calculate the concentration of the sulfuric acid.

 $2NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(I)$

For neutralisation, 25.00 cm³ of phosphoric(V) acid (H₃PO₄) requires 28.70 cm³ of NaOH of concentration 0.1500mol dm⁻³. What is the concentration of the phosphoric(V) acid?

 $H_3PO_4(aq) + 3NaOH(aq) \rightarrow Na_3PO_4(aq) + 3H_2O(l)$

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com

Online Classes : Megalecture@gmail.com

6 Acidified potassium manganate(VII) oxidises hydrogen peroxide to produce oxygen:

 $2\mathsf{KMnO}_4(\mathsf{aq}) \ + \ 3\mathsf{H}_2\mathsf{SO}_4(\mathsf{aq}) \ + \ 5\mathsf{H}_2\mathsf{O}_2(\mathsf{aq}) \ \Rightarrow \ 2\mathsf{MnSO}_4(\mathsf{aq}) \ + \ 8\mathsf{H}_2\mathsf{O}(\mathsf{I}) \ + \ \mathsf{K}_2\mathsf{SO}_4(\mathsf{aq}) \ + \ 5\mathsf{O}_2(\mathsf{g})$

If 45.00 cm³ of 0.020 mol dm⁻³ KMnO₄ is reacted with excess H₂O₂ and H₂SO₄, calculate the volume of O₂ produced (at RTP).

- 7 Work out the numbers of moles present in the following solutions:
 - **a.** 20.0cm³ of 0.220 moldm⁻³ NaOH(aq)
 - **b.** $27.8 \text{ cm}^3 \text{ of } 0.0840 \text{ moldm}^{-3} \text{ HCl(aq)}$
 - **c.** $540 \text{ cm}^3 \text{ of } 0.0200 \text{ moldm}^{-3} \text{ KMnO}_4(\text{aq})$
- 8 If 29.70cm³ of sulfuric acid of concentration 0.2000 moldm⁻³ is required for neutralisation of 25.00cm³ of potassium hydroxide solution, calculate the concentration of the potassium hydroxide solution.

 $2\mathsf{KOH}(\mathsf{aq}) + \mathsf{H}_2\mathsf{SO}_4(\mathsf{aq}) \twoheadrightarrow \mathsf{K}_2\mathsf{SO}_4(\mathsf{aq}) + 2\mathsf{H}_2\mathsf{O}(\mathsf{I})$

9 Calcium carbonate is reacted with 50.0 cm^3 of 0.500 moldm⁻³ hydrochloric acid.

 $CaCO_3(s) + 2HCI(aq) \rightarrow CaCI_2(aq) + CO_2(g) + H_2O(I)$

a. What mass of calcium carbonate is required for an exact reaction?

MEGA LECTURE For Live Online Classes megalecture@gmail.com

www.megalecture.com

Online Classes : Megalecture@gmail.com

b. What volume of CO_2 , measured at RTP, will be produced?

¹⁰ What volume (in cm^3) of 0.0100 mol dm⁻³ barium chloride must be reacted with excess sodium sulfate to produce 0.100g of barium sulfate?

 $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$

¹¹ If 0.100g of magnesium is reacted with 25.00cm³ of 0.200 mol dm⁻³ hydrochloric acid, calculate the volume of hydrogen gas produced at RTP.

 $Mg(s) + 2HCI(aq) \rightarrow MgCI_2(aq) + H_2(g)$

12 When 2.56 g hydrated magnesium sulfate (MgSO₄.xH₂O) is heated, 1.25 g of anhydrous magnesium sulfate (MgSO₄) is formed. Determine the value of x in the formula.

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com

Online Classes : Megalecture@gmail.com

a. If 10.00g of hydrated copper sulfate ($CuSO_4.5H_2O$) is dissolved in water and made up to a volume of 250.0 cm³, what is the concentration of the solution?

b. What mass of anhydrous copper sulfate would be required to make 250.0cm³ of solution with the same concentration as in **a**?

13 A 3.92 g sample of hydrated sodium carbonate (Na₂CO₃.*x*H₂O) was dissolved in water and made up to a total volume of 250.0 cm³. Of this solution, 25.00 cm³ was titrated against 0.100 mol dm⁻³ hydrochloric acid, and 27.40 cm³ of the acid was required for neutralisation. Calculate the value of *x* in Na₂CO₃.*x*H₂O.

14 Limestone is impure calcium carbonate (CaCO₃): 2.00 g of limestone is put into a beaker and 60.00 cm^3 of 3.000 moldm^{-3} hydrochloric acid is added. They are left to react and then the impurities are filtered off and the solution is made up to a total volume of 100.0 cm^3 . Of this solution, 25.00 cm³ requires 35.50 cm³ of 1.000 moldm⁻³ sodium hydroxide for neutralisation. Work out the percentage CaCO₃ in the limestone (assume that none of the impurities reacts with hydrochloric acid).

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com 15 A 25.0cm³ sample of a solution of copper(II) nitrate is added to 10.0cm³ of 1moldm⁻³ potassium iodide. The iodine produced is titrated against 0.0200 moldm⁻³ sodium thiosulfate solution using starch indicator near the end point. 22.50 cm³ of the sodium thiosulfate solution was required for the titration. Calculate the concentration of the copper(II) nitrate solution.

 $2 Cu(NO_3)_2 + 4KI \longrightarrow 2 CuI + I_2 + 4 KNO_3$

2Na25203 + I2 ---- Na25406 + 2NAI

www.megalecture.com

MEGA LECTURE For Live Online Classes

megalecture@gmail.com