CHEMISTRY CALCULATIONS WS 3

Moles \& Solutions

1 If 10.00 g of NaOH is dissolved in water and the volume is made up to $200.0 \mathrm{~cm}^{3}$, calculate the concentration in moldm ${ }^{-3}$ and gdm^{-3}.

2 Calculate the number of moles of HCl present in $50.0 \mathrm{~cm}^{3}$ of $2.00 \mathrm{moldm}^{-3}$ hydrochloric acid.

3 Calculate the number of moles of chloride ions present in $50.0 \mathrm{~cm}^{3}$ of a $0.0500 \mathrm{moldm}^{-3}$ solution of iron(III) chloride $\left(\mathrm{FeCl}_{3}\right)$ and the total concentration of all the ions present.

4 Sulfuric acid is titrated against $25.00 \mathrm{~cm}^{3}$ of 0.2000 moldm $^{-3}$ sodium hydroxide solution; 23.20 cm^{3} of sulfuric acid is required for neutralisation. Calculate the concentration of the sulfuric acid.

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

For neutralisation, $25.00 \mathrm{~cm}^{3}$ of phosphoric (V) acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ requires $28.70 \mathrm{~cm}^{3}$ of NaOH of concentration $0.1500 \mathrm{~mol} \mathrm{dm}^{-3}$. What is the concentration of the phosphoric(V) acid?

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Online Classes : Megalecture@gmail.com

6 Acidified potassium manganate(VII) oxidises hydrogen peroxide to produce oxygen:
$2 \mathrm{KMnO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{MnSO}_{4}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+5 \mathrm{O}_{2}(\mathrm{~g})$

If $45.00 \mathrm{~cm}^{3}$ of $0.020 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KMnO}_{4}$ is reacted with excess $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$, calculate the volume of O_{2} produced (at RTP).

7 Work out the numbers of moles present in the following solutions:
a. $20.0 \mathrm{~cm}^{3}$ of 0.220 moldm $^{-3} \mathrm{NaOH}(\mathrm{aq})$
b. $27.8 \mathrm{~cm}^{3}$ of 0.0840 moldm $^{-3} \mathrm{HCl}(\mathrm{aq})$
c. $540 \mathrm{~cm}^{3}$ of 0.0200 moldm ${ }^{-3} \mathrm{KMnO}_{4}(\mathrm{aq})$

8 If $29.70 \mathrm{~cm}^{3}$ of sulfuric acid of concentration 0.2000 moldm $^{-3}$ is required for neutralisation of $25.00 \mathrm{~cm}^{3}$ of potassium hydroxide solution, calculate the concentration of the potassium hydroxide solution.

$$
2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

9 Calcium carbonate is reacted with $50.0 \mathrm{~cm}^{3}$ of 0.500 moldm $^{-3}$ hydrochloric acid.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a. What mass of calcium carbonate is required for an exact reaction?

Online Classes : Megalecture@gmail.com

b. What volume of CO_{2}, measured at RTP, will be produced?

10 What volume (in cm^{3}) of $0.0100 \mathrm{~mol} \mathrm{dm}^{-3}$ barium chloride must be reacted with excess sodium sulfate to produce 0.100 g of barium sulfate?

$$
\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})
$$

11 If 0.100 g of magnesium is reacted with $25.00 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, calculate the volume of hydrogen gas produced at RTP.

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

12 When 2.56 g hydrated magnesium sulfate $\left(\mathrm{MgSO}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}\right)$ is heated, 1.25 g of anhydrous magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$ is formed. Determine the value of \boldsymbol{x} in the formula.

Online Classes : Megalecture@gmail.com

a. If 10.00 g of hydrated copper sulfate $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$ is dissolved in water and made up to a volume of $250.0 \mathrm{~cm}^{3}$, what is the concentration of the solution?
b. What mass of anhydrous copper sulfate would be required to make $250.0 \mathrm{~cm}^{3}$ of solution with the same concentration as in \mathbf{a} ?

13 A 3.92 g sample of hydrated sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right)$ was dissolved in water and made up to a total volume of $250.0 \mathrm{~cm}^{3}$. Of this solution, $25.00 \mathrm{~cm}^{3}$ was titrated against 0.100 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid, and $27.40 \mathrm{~cm}^{3}$ of the acid was required for neutralisation. Calculate the value of \boldsymbol{x} in $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$.

14 Limestone is impure calcium carbonate $\left(\mathrm{CaCO}_{3}\right): 2.00 \mathrm{~g}$ of limestone is put into a beaker and $60.00 \mathrm{~cm}^{3}$ of 3.000 moldm $^{-3}$ hydrochloric acid is added.They are left to react and then the impurities are filtered off and the solution is made up to a total volume of $100.0 \mathrm{~cm}^{3}$. Of this solution, $25.00 \mathrm{~cm}^{3}$ requires $35.50 \mathrm{~cm}^{3}$ of $1.000 \mathrm{moldm}^{-3}$ sodium hydroxide for neutralisation. Work out the percentage CaCO_{3} in the limestone (assume that none of the impurities reacts with hydrochloric acid).

15 A $25.0 \mathrm{~cm}^{3}$ sample of a solution of copper(II) nitrate is added to $10.0 \mathrm{~cm}^{3}$ of $1 \mathrm{moldm}^{-3}$ potassium iodide. The iodine produced is titrated against $0.0200 \mathrm{moldm}^{-3}$ sodium thiosulfate solution using starch indicator near the end point. $22.50 \mathrm{~cm}^{3}$ of the sodium thiosulfate solution was required for the titration. Calculate the concentration of the copper(II) nitrate solution.

$$
\begin{aligned}
& 2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{KI} \longrightarrow 2 \mathrm{CUI}+\mathrm{I}_{2}+4 \mathrm{KNO}_{3} \\
& 2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}
\end{aligned}
$$

