Online Classes : Megalecture@gmail.com

CHEMISTRY CALCULATIONS WS 3

Moles \& Solutions

1 If 10.00 g of NaOH is dissolved in water and the volume is made up to $200.0 \mathrm{~cm}^{3}$, calculate the concentration in moldm ${ }^{-3}$ and gdm^{-3}.
We know 10 g are present in $200 \mathrm{~cm}^{3}$
so $x \mathrm{~cm}$ will be in $1000 \mathrm{~cm}^{3}\left(1 \mathrm{dm}^{3}\right)$
The cone. is $50 \mathrm{~g} \mathrm{dm}^{-3}$

$$
\begin{aligned}
& \mathrm{Mr} \text { of } \mathrm{N} / \mathrm{OOH}=23+16+1=40 . \\
& 50 \mathrm{~g} \text { of } \mathrm{NaOH}=\frac{50}{40}=1.2 \mathrm{~mol} .
\end{aligned}
$$

$1.2 \mathrm{~mol} \mathrm{dm}^{-3}$

2 Calculate the number of moles of HCl present in $50.0 \mathrm{~cm}^{3}$ of $2.00 \mathrm{moldm}^{-3}$ hydrochloric acid.

$$
\begin{aligned}
& 2 \mathrm{~mol} \mathrm{~m} 1 \mathrm{dm}^{3} \\
& x \mathrm{~m} \quad 50 \mathrm{~cm}^{3}
\end{aligned}
$$

$x=0.1 \mathrm{~mol}$
or
$n=0.1$ moles
3 Calculate the number of moles of chloride ions present in $50.0 \mathrm{~cm}^{3}$ of a $0.0500 \mathrm{moldm}^{-3}$ solution of iron(III) chloride $\left(\mathrm{FeCl}_{3}\right)$ and the total concentration of all the ions present.
η of $\mathrm{FeCl}_{3}=\frac{0.05}{1000} \times 50=2.5 \times 10^{-3} \mathrm{~mol}$.
not $\mathrm{Cl}^{-}=3 \times 2.5 \times 10^{-3}=7.5 \times 10^{-3}$ mol
η of ions $=2.5 \times 10^{-3} \times 4=0.01$ mol
0.01 mol in $50 \mathrm{~cm}^{-3}$

That $0.2 \mathrm{anol} \mathrm{dm}^{-3}$.

4 Sulfuric acid is titrated against $25.00 \mathrm{~cm}^{3}$ of $0.2000 \mathrm{moldm}^{-3}$ sodium hydroxide solution; 23.20 cm^{3} of sulfuric acid is required for neutralisation. Calculate the concentration of the sulfuric acid.

These are the moles of NaOH present \& $\mathrm{NaOH}: \mathrm{H}_{2} \mathrm{SO}_{4}=2: 1$

$$
\begin{aligned}
& \quad 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mid \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& 2 \mathrm{smm}^{3} \text { of } 0.2 \mathrm{moldm} \\
& \text { mol of } \mathrm{H}_{2} \mathrm{SO}_{4} \text { used } \left.=\frac{0.2}{1000} \times 25=\frac{5 \times 10^{-3}}{2}=2.5 \times 10^{-3} \mathrm{~mol} \right\rvert\, \\
& \text { conc of } \mathrm{H}_{2} 80_{4}=\frac{\eta}{V}=\frac{2.5 \times 10^{-3}}{23.2 / 10080}=0.107 \mathrm{mel} / \mathrm{dm}^{-3}
\end{aligned}
$$

5 For neutralisation, $25.00 \mathrm{~cm}^{3}$ of phosphoric (V) acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ requires $28.70 \mathrm{~cm}^{3}$ of NaOH of concentration $0.1500 \mathrm{~mol} \mathrm{dm}^{-3}$. What is the concentration of the phosphoric (V) acid?

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

y m $28.7 \mathrm{~mm}^{3}$ of 0.15 moldmin $^{-3}$ of $\mathrm{NaOH}=0.15 \times 28.7=4.3 \times 10^{-3} \mathrm{~mol}$. \rightarrow
$C=\frac{1.43 \times 10^{-3}}{25 / 1000}$
$=0.057 \mathrm{moldm}^{-3}$

Online Classes : Megalecture@gmail.com

6 Acidified potassium manganate(VII) oxidises hydrogen peroxide to produce oxygen:
$2 \mathrm{KMnO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{MnSO}_{4}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+5 \mathrm{O}_{2}(\mathrm{~g})$
If $45.00 \mathrm{~cm}^{3}$ of $0.020 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KMnO}_{4}$ is reacted with excess $\mathrm{H}_{2} \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$, calculate the volume of O_{2} produced (at RTP).
$0.02 \mathrm{moldm}^{-3}=\frac{\eta}{(45 / 1000)} \mathrm{dmol}$

$$
\eta=0.9 \times 10^{-3} \mathrm{~mol}
$$

$$
\begin{aligned}
& \mathrm{KMnO}_{4}: \mathrm{O}_{2} \\
& 2: 5 \\
& 0.9 \times 10^{-3}: \frac{2.25 \times 10^{-3} \text { mol of } \mathrm{O}_{2} \text { produced }}{V=n \times 24 \mathrm{dm}^{3}=54 \times 10^{-3} \mathrm{dm}^{3} \text { or } 54 \mathrm{~cm}^{3}}
\end{aligned}
$$

mol of $\mathrm{KMnO}_{4} \uparrow$

7 Work out the numbers of moles present in the following solutions:
a. $20.0 \mathrm{~cm}^{3}$ of 0.220 moldm $^{-3} \mathrm{NaOH}(\mathrm{aq})$ 0.22 mol in $1000 \mathrm{~cm}^{3}$

$$
\begin{aligned}
\eta & =C V \\
& \left.=\frac{(0.22}{1000}\right)(20)
\end{aligned}
$$

so 4.4×10^{-3} mol in $20 \mathrm{~cm}^{3}$

$$
4.4 \times 10^{-3} \text { mot Ans. } \quad=4.4 \times 10^{-3} \text { mol. }
$$

b. $27.8 \mathrm{~cm}^{3}$ of $0.0840 \mathrm{moldm}^{-3} \mathrm{HCl}(\mathrm{aq})$

$$
0.084 \mathrm{~mol} \longrightarrow 1000 \mathrm{~cm}^{3}
$$

$$
\eta=C N
$$

$$
2.33 \times 10^{-3} \mathrm{~mol} \longrightarrow 27.8 \mathrm{~cm} \quad O R \ldots
$$

$$
=\frac{0.084}{1000} \times 27.8
$$

$$
2.33 \times 10^{-3} \text { enol }
$$

$$
=2.33 \times 10^{-3} \text { mol }
$$

c. $540 \mathrm{~cm}^{3}$ of 0.0200 moldm $^{-3} \mathrm{KMnO}_{4}(\mathrm{aq})$

$$
\begin{aligned}
M & =C N \\
& =\frac{0.02}{1000} \times 540=10.8 \times 10^{-3} \text { mol }
\end{aligned}
$$

8 If $29.70 \mathrm{~cm}^{3}$ of sulfuric acid of concentration 0.2000 moldm $^{-3}$ is required for neutralisation of $25.00 \mathrm{~cm}^{3}$ of potassium hydroxide solution, calculate the concentration of the potassium hydroxide solution.

$$
2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

9 Calcium carbonate is reacted with $50.0 \mathrm{~cm}^{3}$ of 0.500 moldm $^{-3}$ hydrochloric acid.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a. What mass of calcium carbonate is required for an exact reaction?
η of $\mathrm{HCl}=\left(0.5 \mathrm{~mol} . \mathrm{sh} \mathrm{m}^{\mathrm{m}}\right)\left(50 \mathrm{sm}^{3}\right)=0.025 \mathrm{~mol}$ Mars of $\mathrm{CaCO}_{3}=(0.028)(40.1+12+48)$
M of $\mathrm{CaCO}_{3}=\frac{0.025}{2}=0.0725 \mathrm{~mol}$

Online Classes : Megalecture@gmail.com

b. What volume of CO_{2}, measured at RTP, will be produced?
n of $\mathrm{CO}_{2}=\eta$ of CaCO_{3}
$=0.0725 \mathrm{gmol}$

$$
V=24 \frac{\mathrm{dm}^{3}}{\mathrm{~mol}} \times 0.0125 \mathrm{~mol}=0.3 \mathrm{dm}^{3}
$$

The $24 \mathrm{dm}^{3}$ in the formula is a
ratio of moles of gas to volume
Hence the units d^{3} / mol.
10 What volume (in cm^{3}) of $0.0100 \mathrm{~mol} \mathrm{dm}^{-3}$ barium chloride must be reacted with excess sodium sulfate to produce 0.100 g of barium sulfate?

$$
\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})
$$

11 If 0.100 g of magnesium is reacted with $25.00 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, calculate the volume of hydrogen gas produced at RTP.

$$
\text { n of } \mathrm{Mg}=\frac{0.1}{24.3}=4.11 \times 10^{-3} \text { mol }
$$

$$
\text { n of } \mathrm{HCl}=\frac{0.2}{1000} \times 25=5 \times 10^{-3} \mathrm{~mol}
$$

HCl is the limiting factor, as with $5 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{HCl} 2.5 \times 10^{-3} \mathrm{~mol}$ of Mg will react to form 2.5×10^{-3} of H_{2}
12 When 2.56 g hydrated magnesium sulfate $\left(\mathrm{MgSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}\right)$ is heated, 1.25 g of anhydrous magnesium sulfate $\left(\mathrm{MgSO}_{4}\right)$ is formed. Determine the value of \boldsymbol{x} in the formula.

$$
\begin{aligned}
& \mathrm{MgSO}_{4} \cdot X \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{MgSO}_{4}+X \mathrm{H}_{2} \mathrm{O} \\
& 2.56 \mathrm{~g} \quad 1.25 \mathrm{~g} \\
& \text { Mr of } \mathrm{MgSO}_{4}=120.4 \\
& \mathrm{Mr} \text { of } \mathrm{MgSO} \cdot x \mathrm{H}_{2} \mathrm{O}=120.4+18 x \\
& \text { oof } \mathrm{MgSO}_{4}=\frac{1.25}{120.4}=10.38 \times 10^{-3} \\
& \eta M g 8 O 4=\eta \text { of } \mathrm{MgSO}_{4} \cdot \times \mathrm{H}_{2} \mathrm{O}=10.38 \times 10^{-3} \\
& 10.38 \times 10^{-3}=\frac{2.56}{120.4+18 x} \\
& 120.4+18 x=246.62 \\
& x=7.012 \\
& x=7
\end{aligned}
$$

Online Classes : Megalecture@gmail.com

a. If 10.00 g of hydrated copper sulfate $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$ is dissolved in water and made up to a volume of $250.0 \mathrm{~cm}^{3}$, what is the concentration of the solution? Mr of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=159.6+9 \mathrm{O}=249.6$
$\eta \mathrm{CuSO}_{4}=\eta \mathrm{CnSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=\frac{10}{249.6}=0.04006 \mathrm{amol}$
0.04006 is in $250 \mathrm{~cm}^{3}$
0.1602 will be in $1000 \mathrm{~cm}^{3}$
$C=0.160 \mathrm{~mol} \mathrm{dm} \mathrm{m}^{-3}$
b. What mass of anhydrous copper sulfate would be required to make $250.0 \mathrm{~cm}^{3}$ of solution with the same concentration as in \mathbf{a} ?
$\mathrm{MrCuSO}_{4}=159.6$
ท required $=0.04006 \mathrm{~mol}$
That quantity in grans is $=159.6 \times 0.04006=6.39 \mathrm{~g}$

* 13 A 3.92 g sample of hydrated sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right)$ was dissolved in water and made up to a total volume of $250.0 \mathrm{~cm}^{3}$. Of this solution, $25.00 \mathrm{~cm}^{3}$ was titrated against 0.100 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid, and $27.40 \mathrm{~cm}^{3}$ of the acid was required for neutralisation. Calculate the value of \boldsymbol{x} in $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \boldsymbol{x} \mathrm{H}_{2} \mathrm{O}$.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Mr of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \times \mathrm{H}_{2} \mathrm{O}=106+18 x$
u_{r} of $\mathrm{HCl}=36.5$
n of $\mathrm{HCl}=\frac{0.1 \times 27.4}{1000}=2.74 \times 10^{-3} \mathrm{~mol}$
I of $\mathrm{Na}_{2} \mathrm{CO}_{3}=1.37 \times 10^{-3} \mathrm{~mol}$
mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.145 \mathrm{~g}$ was present in the
1.45 g were in the $250 \mathrm{~cm}^{3}$
$25 \mathrm{~cm}^{3}$ sol of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$: x \mathrm{H}_{2} \mathrm{O}$ divided by mr
1.45 g	$2.47 \mathrm{~g} /$ to get moles.
$0.01368 \mathrm{~mol}:$	0.137 mol
1	$: 10$
$x=10$.	

14 Limestone is impure calcium carbonate $\left(\mathrm{CaCO}_{3}\right): 2.00 \mathrm{~g}$ of limestone is put into a beaker and $60.00 \mathrm{~cm}^{3}$ of 3.000 moldm ${ }^{-3}$ hydrochloric acid is added. They are left to react and then the impurities are filtered off and the solution is made up to a total volume of $100.0 \mathrm{~cm}^{3}$. Of this solution, $25.00 \mathrm{~cm}^{3}$ requires $35.50 \mathrm{~cm}^{3}$ of $1.000 \mathrm{moldm}^{-3}$ sodium hydroxide for neutralisation. Work out the percentage CaCO_{3} in the limestone (assume that none of the impurities reacts with hydrochloric acid).
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{CaCl}_{2}$
n of $\mathrm{HCl}=C . V=\frac{3 \times 60}{1000}=0.18 \mathrm{~mol}$
M of $\mathrm{NaOH}=\frac{1 \times 35.5}{1000}=0.0355$ anal. $\rightarrow \mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$.
$\underset{m}{\bmod } 25 \mathrm{HCl}=0.0355 \mathrm{~mol}$.
HCI in $100 \mathrm{~cm}^{3}=0.0355 \times 4=0.142 \mathrm{~mol}$ - Left over HCl after it reacted

$$
\begin{aligned}
\% \text { by mors s of } \mathrm{CaCO}_{3} & =\frac{1.9079}{2} \times 100 \\
& =95.1 \% \text { Ane }
\end{aligned}
$$

15 A $25.0 \mathrm{~cm}^{3}$ sample of a solution of copper(II) nitrate is added to $10.0 \mathrm{~cm}^{3}$ of $1 \mathrm{moldm}^{-3}$ potassium iodide. The iodine produced is titrated against 0.0200 moldm $^{-3}$ sodium thiosulfate solution using starch indicator near the end point. $22.50 \mathrm{~cm}^{3}$ of the sodium thiosulfate solution was required for the titration. Calculate the concentration of the copper(II) nitrate solution.

$$
4 \mathrm{KI}+2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow 2 \mathrm{CuI}+I_{2}+2 \mathrm{~K}_{2} \mathrm{NO}_{3}
$$

$$
\eta \text { of } K I=\frac{1 \times 10}{1000}=0.01 \mathrm{~mol}
$$

$$
2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}
$$

$$
\begin{aligned}
& \eta \text { of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=\frac{0.02 \times 22.5}{1000}=450 \times 10^{-6} \mathrm{~mol} \\
& \eta \text { of } I_{2}=2.25 \times 10^{-4} \mathrm{~mol} \\
& \eta \mathrm{Cu}(\mathrm{NO})_{2}=450 \times 10^{-6} \mathrm{~mol}
\end{aligned}
$$

$$
\text { Conc. }=\frac{450 \times 10^{-6}}{25 / 1000}=0.018 \mathrm{moldm}^{-3}
$$

