Online Classes : Megalecture@gmail.com CHEMISTRY CALCULATIONS WS 3

Moles & Solutions

4 Sulfuric acid is titrated against 25.00cm³ of 0.2000 moldm⁻³ sodium hydroxide solution; 23.20 cm³ of sulfuric acid is required for neutralisation. Calculate the concentration of the sulfuric acid. Thuse are the anales of NaOH present e_{1}^{2} NaOH: $U_{2}CO_{4} = 2:1$

$$2NaOH(aq) + H_2SO_4(aq) + Na_2SO_4(aq) + 2H_2O(l)$$

$$2Scm^2 of 0.2 moldm^{-3} i_1 = \frac{0.2}{1000} \times 2S + \frac{[S \times 10^{-3}mol]}{1000}$$

$$mol of H_2SO_4 used = \frac{5 \times 10^{-3}}{2} \cdot \frac{2.5 \times 10^{-3}}{2} mol$$

$$conc of H_2SO_4 = \frac{1}{V} = \frac{2.5 \times 10^{-5}}{23.2/1000} = 0.107 \text{ moldm}^{-3}$$

5 For neutralisation, 25.00 cm³ of phosphoric(V) acid (H_3PO_4) requires 28.70 cm³ of NaOH of concentration 0.1500mol dm⁻³. What is the concentration of the phosphoric(V) acid?

 $H_3PO_4(aq) + 3NaOH(aq) \rightarrow Na_3PO_4(aq) + 3H_2O(l)$ $\begin{array}{l} n = 2^{2} + 3^{3} + 3^{2} + 3^{3} + 3^{$

CEDAR COLLEGE

CHEMISTRY CALCULATIONS WS 3 www.youtube.com/megalecture

Online Classes : Megalecture@gmail.com

6 Acidified potassium manganate(VII) oxidises hydrogen peroxide to produce oxygen:

 $2\mathsf{KMnO}_4(\mathsf{aq}) \ + \ 3\mathsf{H}_2\mathsf{SO}_4(\mathsf{aq}) \ + \ 5\mathsf{H}_2\mathsf{O}_2(\mathsf{aq}) \ \Rightarrow \ 2\mathsf{MnSO}_4(\mathsf{aq}) \ + \ 8\mathsf{H}_2\mathsf{O}(\mathsf{I}) \ + \ \mathsf{K}_2\mathsf{SO}_4(\mathsf{aq}) \ + \ 5\mathsf{O}_2(\mathsf{g})$

If 45.00 cm³ of 0.020 mol dm⁻³ KMnO₄ is reacted with excess H_2O_2 and H_2SO_4 , calculate the volume of O_2 produced (at RTP).

 $\begin{array}{c|c} 0.02 \mod dm^{-3} = \underbrace{M}_{(45/1000)} \mod & KMnOy : 02 \\ 0.02 \mod dm^{-3} = \underbrace{M}_{(45/1000)} \mod & Z : 5 \\ 0.9 \times 10^{-3} \mod & 2.25 \times 10^{-3} \mod 0f 02 \ producecl, \\ 0.9 \times 10^{-3} : 2.25 \times 10^{-3} \mod 0f 02 \ producecl, \\ 0.9 \times 10^{-3} : 2.25 \times 10^{-3} \mod 0f 05 \ ycm^{-3} \ v = M \times 24 \ dm^{-3} = 54 \times 10^{-3} \ dm^{-3} \ ov 5 \ ycm^{-3} \ dm^{-3} \ ov 5 \ ycm^{-3} \ dm^{-3} \ dm^{$

7 Work out the numbers of moles present in the following solutions:

- a. 20.0 cm³ of 0.220 moldm⁻³ NaOH(aq) 0.22 and in 1000 cm³ 80 4.4×10^{-3} mol in 20 cm³ 4.4×10^{-3} mol Ans. b. 27.8 cm³ of 0.0840 moldm⁻³ HCl(aq) 0.084 mol $\longrightarrow 1000$ cm³ 2.33 $\times 10^{-9}$ mol 2.33×10^{-9} mol c. 540 cm³ of 0.0200 moldm⁻³ KMnO₄(aq) M = CV $z = \frac{0.02}{1000} \times 540 = 10.8 \times 10^{-3}$ mol
- 8 If 29.70cm³ of sulfuric acid of concentration 0.2000 moldm⁻³ is required for neutralisation of 25.00cm³ of potassium hydroxide solution, calculate the concentration of the potassium hydroxide solution.

 $\begin{array}{rcl} 2 \text{KOH}(\text{aq}) + \text{H}_2 \text{SO}_4(\text{aq}) \rightarrow \text{K}_2 \text{SO}_4(\text{aq}) + 2 \text{H}_2 \text{O}(\text{I}) \\ \eta \text{H}_2 \text{80}_4 = & \underline{29.7 \times 0.2}_{1000} = & \underline{5.94 \times 10^{-3} \text{ mol}}. \\ & 1000 & \text{Conc} = & \underline{11.88 \times 10^{-3} \times 10^{-0}} \\ & \text{KoH} = & \underline{11.88 \times 10^{-3} \text{mol}}. \\ & \text{This is present} \\ & \text{in allows} & \text{in I dm}^3 \end{array}$

Calcium carbonate is reacted with 50.0cm³ of 0.500 moldm⁻³ hydrochloric acid.

 $CaCO_3(s) + 2HCI(aq) \rightarrow CaCI_2(aq) + CO_2(g) + H_2O(I)$

a. What mass of calcium carbonate is required for an exact reaction? $M \text{ of } HCl = (0.5 \text{ mol.dm}^3)(50 \text{ cm}^3) = 0.025 \text{ mol}$ Mars of $CaCO_3 = (0.0126)(40.1 + 12 + 48)$ $1000 \text{ cm}^3 \text{ dm}^3$ = 1.25 g med. $M \text{ of } CaCO_3 = 0.025 = 0.0125 \text{ mol}$

CEDAR COLLEGE

9

CHEMISTRY CALCULATIONS WS 3 www.youtube.com/megalecture

Online Classes : Megalecture@gmail.com

b. What volume of CO₂, measured at RTP, will be produced?

 $\eta \circ f \circ C_2 = \eta \circ f \circ C_{3}$ = 0.0125 gm of

$$V = 24 \frac{dm^3}{mol} \times 0.0725 mol = 0.3 dm^3$$

The 24 dm³ is the Formula is a ratio of moles of gas to volume. Hence the units dm³/mol.

10

What volume (in
$$cm^3$$
) of 0.0100 mol dm^{-3} barium chloride must be reacted with excess sodium sulfate to produce 0.100g of barium sulfate?

$$BaCl_{2}(aq) + Na_{2}SO_{4}(aq) \Rightarrow BaSO_{4}(s) + 2NaCl(aq)$$

$$BaSO_{4}(s) + 2NaCl(aq)$$

$$V = \frac{\eta}{C} = \frac{4 \cdot 29 \times 10^{-4}}{0.01} = 4 \cdot 29 \times 10^{-4} \text{ mol}$$

$$W = \frac{\eta}{C} = \frac{4 \cdot 29 \times 10^{-4}}{0.01} = 4 \cdot 29 \times 10^{-4} \text{ mol}$$

$$W = \frac{\eta}{C} = \frac{4 \cdot 29 \times 10^{-4}}{0.01} = 42.9 \text{ cm}^{3}$$

$$W = \frac{\eta}{C} = \frac{4 \cdot 29 \times 10^{-4}}{0.01} = 42.9 \text{ cm}^{3}$$

11

If 0.100g of magnesium is reacted with 25.00cm³ of 0.200 mol dm⁻³ hydrochloric acid, calculate the volume of hydrogen gas produced at RTP.

$$Mg(s) + 2HCl(aq) + MgCl_{2}(aq) + H_{2}(g)$$

$$M of Mg = \underbrace{0.1}_{24.3} = 4.11 \times 10^{-3} \text{ mol}.$$

$$M of HCl = \underbrace{0.2}_{1600} \times 2S = 5 \times 10^{-3} \text{ mol}$$

$$= 60 \text{ cm}^{-3}.$$

Helin the limiting factor, as with SX10 mon of Hel 2.5x10³ and of Mg will react to form 2.5x10³ of H₂

12 When 2.56 g hydrated magnesium sulfate (MgSO₄.xH₂O) is heated, 1.25 g of anhydrous magnesium sulfate (MgSO₄) is formed. Determine the value of x in the formula.

$$Mg SO_{4} \times H_{2}O \longrightarrow Mg SO_{4} + \chi H_{2}O$$
2.56g
$$I \cdot 25g$$

$$Mr of Mg SO_{4} = 120.4$$

$$Mr of Mg SO_{4} \cdot \chi H_{2}O = 120.4 + 18\chi$$

$$M of Mg SO_{4} \cdot \chi H_{2}O = 120.4 + 18\chi$$

$$M of Mg SO_{4} = \frac{1 \cdot 25}{120.4} = 10.38 \times 10^{-3}$$

$$M Mg SO_{4} = \eta of Mg SO_{4} \cdot \chi H_{2}O = 10.38 \times 10^{-3}$$

$$10.38 \times 10^{-3} = \frac{2.56}{120.4 + 18x}$$

$$120.4 + 18x = 246.62$$

$$\chi = 7.012$$

$$\chi = 7$$

CEDAR COLLEGE

Online Classes : Megalecture@gmail.com

a. If 10.00g of hydrated copper sulfate (CuSO₄.5H₂O) is dissolved in water and made up to a volume of 250.0 cm³, what is the concentration of the solution? in 250 cm³ be in 1000 cm³

$$M_{r} of Cusoy .5H_{2}O = 159.6 + 90 = 249.6$$

$$0.04006 n m 2500$$

$$0.1602 vsill be in 10$$

$$0.1602 vsill be in 10$$

$$C = 0.160 \text{ anoldm}^{-3}$$

b. What mass of anhydrous copper sulfate would be required to make 250.0cm³ of solution with the same concentration as in a?

$$Mr Cusoy = 159.6$$

$$Mr c$$

 \star 13 A 3.92 g sample of hydrated sodium carbonate (Na₂CO₃.xH₂O) was dissolved in water and made up to a total volume of 250.0 cm³. Of this solution, 25.00 cm³ was titrated against 0.100 mol dm^{-3} hydrochloric acid, and 27.40 cm³ of the acid was required for neutralisation. Calculate the value of \mathbf{x} in Na₂CO₃ \mathbf{x} H₂O. $Na_2Co_2 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$

14 Limestone is impure calcium carbonate (CaCO₃): 2.00 g of limestone is put into a beaker and

 60.00 cm^3 of 3.000 moldm^{-3} hydrochloric acid is added. They are left to react and then the impurities are filtered off and the solution is made up to a total volume of 100.0 cm^3 . Of this solution, 25.00 cm³ requires 35.50 cm³ of 1.000 moldm⁻³ sodium hydroxide for neutralisation. Work out the percentage CaCO₃ in the limestone (assume that none of the impurities reacts with hydrochloric acid). $CaCO_3 + 2HCI \rightarrow H_2O + CO_2 + CaCI_2$ Mould be 0.02 mol which would react with0.04 mol of HCI. 100 cm³ of sol contains theUtf over HCI. $\eta \text{ of } Na0H = \frac{1 \times 35.5}{1000} = 0.0355 \text{ quol.} \rightarrow Na0H + HCI \rightarrow NaCI + H_20.$

$$m = 4 \text{ Acl} = 0.0355 \text{ 4001.}$$

$$m = 25 \text{ cm}^3$$

$$m = 100 \text{ cm}^3 = 0.0355 \text{ x} \text{ y} = 0.142 \text{ mol} \text{ cm}^2 \text{ cm}^2$$

in the 250 cm3

: 10

Amount of HCI that = 0.182 - 0.142 = 0.038 and. actually reacted $41001 \text{ of } CaCO_3 = 0.038 = 0.019 \text{ 4not}$ $10001 \text{ of } CaCO_3 = 0.038 = 0.019 \text{ 4not}$ $10001 \text{ of } CaCO_3 = 0.038 = 0.019 \text{ 4not}$ $10001 \text{ of } CaCO_3 = 0.019 \text{ x } 100.1 = 1.9019 \text{ g}$ $10001 \text{ of } CaCO_3 = 0.019 \text{ x } 100.1 = 1.9019 \text{ g}$

15 A 25.0cm³ sample of a solution of copper(II) nitrate is added to 10.0cm³ of 1moldm⁻³ potassium iodide.The iodine produced is titrated against 0.0200 moldm⁻³ sodium thiosulfate solution using starch indicator near the end point. 22.50 cm³ of the sodium thiosulfate solution was required for the titration. Calculate the concentration of the copper(II) nitrate solution.

$$4KI + 2Cu(NO_3)_2 \longrightarrow 2CuI + I_2 + 2K_2NO_3$$

$$M_{1} = \frac{1 \times 10}{1000} = 0.01 \text{ mol}$$

$$2 \text{ Ma}_{2} S_{2} O_{3} + I_{2} \longrightarrow \text{ Ma}_{2} S_{4} O_{6} + 2\text{ NAI}$$

$$M_{1} \text{ of } \text{ Na}_{2} S_{2} O_{3} = \frac{0.02 \times 22.5}{1000} = 450 \times 10^{-6} \text{ mol}$$

$$M_{1} \text{ of } I_{2} = 2.25 \times 10^{-4} \text{ mol} \text{ mol} \text{ XV}_{2}$$

$$M_{1} \text{ cu} (\text{Ng})_{2} = 450 \times 10^{-6} \text{ mol} \text{ L} \times 2.$$

$$Conc. = \frac{450 \times 10^{-6}}{25/1000} = 0.018 \text{ moldm}^{-3}$$

www.megalecture.com

MEGA LECTURE For Live Online Classes megalecture@gmail.com