1 How many moles of hydrogen gas are produced when 0.4 moles of sodium react with excess water?

$$
2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}
$$

2 How many moles of O_{2} react with $0.01 \mathrm{~mol}_{3} \mathrm{H}_{8}$?

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

3 How many moles of $\mathrm{H}_{2} \mathrm{~S}$ are formed when 0.02 mol of HCl react with excess $\mathrm{Sb}_{2} \mathrm{~S}_{3}$?

$$
\mathrm{Sb}_{2} \mathrm{~S}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{SbCl}_{3}+3 \mathrm{H}_{2} \mathrm{~S}
$$

4 How many moles of oxygen are formed when 0.6 mol of KClO_{3} react?

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

5 How many moles of iron are formed when 0.9 mol CO react with excess iron oxide?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

Online Classes : Megalecture@gmail.com

6 a. What is the limiting reactant in each of the following reactions?
$0.1 \mathrm{~mol} \mathrm{Sb}_{4} \mathrm{O}_{6}$ reacts with $0.5 \mathrm{~mol}_{2} \mathrm{SO}_{4}$

$$
\mathrm{Sb}_{4} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Sb}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}
$$

b. $0.20 \mathrm{~mol} \mathrm{AsCl}_{3}$ reacts with $0.25 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

$$
4 \mathrm{AsCl}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{As}_{4} \mathrm{O}_{6}+12 \mathrm{HCl}
$$

c. 0.25 mol Cu react with 0.50 mol dilute HNO_{3} according to the equation:

$$
3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}
$$

d. 0.10 mol NaCl reacts with $0.15 \mathrm{~mol} \mathrm{MnO}_{2}$ and $0.20 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
2 \mathrm{NaCl}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}
$$

MEGA LECTURE

Online Classes : Megalecture@gmail.com

7 Consider the combustion of butane:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

10.00 g of butane reacts exactly with 35.78 g of oxygen to produce 30.28 g of carbon dioxide.What mass of water was produced?

8 Consider the reaction of sodium with oxygen:

$$
4 \mathrm{Na}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})
$$

a. How much sodium reacts exactly with 3.20 g of oxygen?
b. What mass of $\mathrm{Na}_{2} \mathrm{O}$ is produced?

9 The following equation represents the combustion of butane:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

If 10.00 g of butane is used, calculate:
a. the mass of oxygen required for the exact reaction
b. the mass of carbon dioxide produced.

Online Classes : Megalecture@gmail.com

10 Boron can be prepared by reacting $\mathrm{B}_{2} \mathrm{O}_{3}$ with magnesium at high temperatures:

$$
\mathrm{B}_{2} \mathrm{O}_{3}+3 \mathrm{Mg} \rightarrow 2 \mathrm{~B}+3 \mathrm{MgO}
$$

What mass of B is obtained if $0.75 \mathrm{~g} \mathrm{~B}_{2} \mathrm{O}_{3}$ is reacted with 0.50 g Mg ?

11 Iron(III) oxide reacts with carbon to produce iron:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}
$$

What mass of Fe is obtained if 10.0 tonnes of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is reacted with 1.00 tonne of C ?

12 Consider the reaction between magnesium and nitrogen:

$$
3 \mathrm{Mg}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})
$$

10.00 g of magnesium is reacted with 5.00 g of nitrogen.Which is the limiting reactant?

13 For the reaction:

$$
4 \mathrm{Fe}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4}+8 \mathrm{Na}_{2} \mathrm{CO}_{3}+7 \mathrm{O}_{2} \rightarrow 8 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{CO}_{2}
$$

there is 100.0 g of each reactant available. Which is the limiting reactant?

Online Classes : Megalecture@gmail.com

14 Consider the reaction between magnesium and nitrogen:

$$
3 \mathrm{Mg}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})
$$

10.00 g of magnesium is reacted with 5.00 g of nitrogen. Which is the limiting reactant?

15 Consider the reaction between sulfur and fluorine:

$$
\mathrm{S}(\mathrm{~s})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{SF}_{6}(\mathrm{~g})
$$

10.00 g of sulfur reacts with 10.00 g of fluorine.
a. Which is the limiting reactant?
b. What mass of sulfur(VI) fluoride is formed?
c. What mass of the reactant in excess is left at the end?

16 Calculate the percentage yield in each of the following reactions.
a. When 2.50 g of SO_{2} is heated with excess oxygen, 2.50 g of SO_{3} is obtained.

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}
$$

b. When 10.0 g of arsenic is heated in excess oxygen, 12.5 g of $\mathrm{As}_{4} \mathrm{O}_{6}$ is produced.

$$
4 \mathrm{As}+3 \mathrm{O}_{2} \rightarrow \mathrm{As}_{4} \mathrm{O}_{6}
$$

(c) When 1.20 g ethene reacts with excess bromine, 5.23 g of 1,2-dibromoethane is produced.

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br}
$$

