

) In cyclic opposite angle = 180°) Arc length = $\frac{G}{3} x 2\pi r$) Sector area = $\frac{G}{3} x \pi r^2$

Volume = A x hA = Base area.

Sum of interior = (n-2)180Each angle in regular = $\frac{(n-2)1}{n}$ Sum of exterior = 360°

In similarity

) Angles equal) Sides proportional (equal ratio)) $\frac{A_1}{A_2} = (\frac{S_1}{S_2})^2$) $\frac{V_1}{V_2} = (\frac{S_1}{S_2})^3$

Direct Variation

 $x \propto y \longrightarrow x = k y$ <u>Inversely Variation</u> $x \propto \frac{1}{y} \longrightarrow x = \frac{k}{y}$ <u>Indices</u> $a^{n} x a^{m} = a^{n+m}$ $a^{n} \div a^{m} = a^{n-m}$

$$(a^{n})^{m} = a^{nm}$$

$$\sqrt[m]{a^{m}} = a^{\frac{m}{n}}$$

$$a^{z} = 1$$

$$a^{-1} = \frac{1}{a}$$

Inequality

-x < y → x > -y

Linear programming

Shade unrequired region after:-

- Turn inequality \longrightarrow equation. (make y subject)
- Draw equation of (straight line).
- Shade over or under the line.

MEGA LECTURE

Bearing:

Angle measured

From

North

Clock Wise

Sine rule:

Given angle & opposite side $\frac{a}{s} = \frac{b}{s} = \frac{c}{s}$

Cosine rule:

Given 3 sides or 2 sides and angle in bet. $a^2 = b^2 + c^2 - 2bc \cos A$ $\cos A = \frac{b^2 + c^2 - a^2}{2b}$

Limits of Accuracy:

nearest \longrightarrow $\dot{-}2 \longrightarrow$ result \pm

Quadratic Equation:

Correct to 2 decimal place use $X = \frac{-b \pm \sqrt{b^2 - 4a}}{2a}$ where $ax^2 + bx + c = 0$

Gradient:

ecture.com) Line touches the curve at point \land) Tan angle.) Diff of y / diff of x Where m = gradient, c = y intercept

Graphical soln:

) Point of intersection of curve with x axis or line) Line cut x axis \longrightarrow y = 0) Line cut y axis \longrightarrow x = 0

In a speed time graph:

Distance = Area under graph. Acceleration = $\frac{\iota ha}{\iota ha} \frac{o s}{o tt}$

Sets:

 $A \cap B$ $1 \in A$ 1 ∉ B

complement not A Αርδ Blε

 $A \cup B$ all element

In Vector:

If you want resultant you must start with point and end by the other. For example: $\overrightarrow{A} = \overrightarrow{A} + \overrightarrow{C} + \overrightarrow{D}$

Column Vector:

 $\binom{3}{2} = \overline{A}$ Start with A 3 unit in +ve x Then 2 unit in +ve y

$\frac{\text{Parallel Vector:}}{\operatorname{k}\binom{a}{b} / / \binom{a}{b}}$

Modulus Vector:

• Length magnitude If $\vec{a} = \begin{pmatrix} x \\ y \end{pmatrix} \longrightarrow |a| = \sqrt{x^2 + y^2}$

Function:

To get the inverse make x subject. Composed function substitute x by function.

Matrix:

Order R x C $M_1 \ge M_2$ For multiply $R_1 \ge C_1$ $R_2 \ge C_2$ Condition $C_1 = R_2$

MEGA LECTURE

