Standard form:

$$
\overline{\mathrm{a} \times 10^{\mathrm{n}}}
$$

- Where a one digit.
- And $n+v e$ \qquad

Simple Interest:

$$
\mathrm{I}=\frac{R}{1}
$$

Where I: Interest.
P: Amount of Money.
T: Time Yearly.
R: Rate.

Compound Interest:

$$
\mathrm{T}=\mathrm{P}(1+\mathrm{R} / 100)^{\mathrm{n}}
$$

T: Total Amount of Money.
P: Amount of Money.
R : Rate.
n : Time Yearly.

Shape	Area	Perimeter
Rec	$\mathrm{L} \times \mathrm{W}$	$2(\mathrm{~L}+\mathrm{W})$
Square	$\mathrm{L} \times \mathrm{W}$	4 L
Parallel	B x h	Sum of sidel
Trap	$1 / 2(\mathrm{a}+\mathrm{b}) \mathrm{h}$	Sum or idde
Kite	$1 / 2 \mathrm{D}_{1} \times \mathrm{D}_{2}$	Sum \&f side
Triangle	$1 / 2 \mathrm{~B} \times \mathrm{h}$	Sum of side
	$1 / 2 \mathrm{a} \mathrm{x} \mathrm{b} \mathrm{x} \sin \mathrm{t}$	
Circle	$\Pi \mathrm{r}^{2}$	$2 \pi \mathrm{r}$

In a right angle triangle

- $\mathrm{SOH} / \mathrm{CAH} / \mathrm{TOA}$
- $\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}$-ythagoras Therom)

Parallel lines

- Two alternate equal angles.
- Two corresponding equal angles.
- Two interior angles are equal to

In Circle

- radius \perp tangent
- 2 circular angle equal
- Central angle $=2$ circles
- 2 tangent are equal
- Angle opposite Diameter $=90^{\circ}$
- In cyclic opposite angle $=180^{\circ}$
- Arc length $=\frac{G}{3} \times 2 \pi I$
- Sector area $=\frac{G}{3} x \pi I^{2}$

Volume $=\mathrm{Axh}$
$\mathrm{A}=$ Base area.
Sum of interior $=(n-2) 180$
Each angle in regular $=\frac{(n-2) 1}{n}$
Sum of exterior $=360^{\circ}$

In similarity

- Angles equal
- Sides proportional (equal ratio)
- $\frac{A_{1}}{A_{2}}=\left(\frac{S_{1}}{S_{2}}\right)^{2}$
- $\frac{v_{1}}{v_{2}}=\left(\frac{s_{1}}{s_{2}}\right)^{3}$

Direct Variation

$$
\mathrm{x} \propto \mathrm{y} \quad \longrightarrow \mathrm{x}=\mathrm{k} \mathrm{y}
$$

Inversely Variation

$$
\mathrm{x} \propto \frac{1}{y} \longrightarrow \mathrm{x}=\frac{k}{y}
$$

Indices

$$
\begin{aligned}
& \mathrm{a}^{\mathrm{n}} \times a^{\mathrm{m}}=a^{\mathrm{n}+\mathrm{m}} \\
& \mathrm{a}^{\mathrm{n}} \div \mathrm{a}^{\mathrm{m}}=a^{\mathrm{n}-\mathrm{m}} \\
& \left(\mathrm{a}^{\mathrm{n}}\right)^{\mathrm{m}}=\mathrm{a}^{\mathrm{nm}} \\
& \sqrt[n]{a^{m}}=a^{\frac{m}{n}} \\
& a^{Z}=1 \\
& a^{-1}=\frac{1}{u}
\end{aligned}
$$

Inequality

$$
-\mathrm{x}\langle\mathrm{y} \longrightarrow \mathrm{x}>-\mathrm{y}
$$

Linear programming

- Shade unrequired region after:-
- Turn inequality \longrightarrow equation. (make y subject)
- Draw equation of (straight line).
- Shade over or under the line.

Bearing:

Angle measured

- From - North • Clock Wise

Sine rule:

Given angle \& opposite side
$\frac{u}{S A}=\frac{D}{S B}=\frac{L}{S L}$

Cosine rule:

Given 3 sides or 2 sides and angle in bet.
$\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}-2 \mathrm{bc} \cos \mathrm{A}$
$\cos \mathrm{A}=\frac{b^{2}+\mathrm{c}^{2}-u^{2}}{2 b}$

Limits of Accuracy:

nearest \square $\div 2 \longrightarrow$ result \pm

Quadratic Equation:
Correct to 2 decimal place use
$\mathrm{X}=\frac{-b \pm \sqrt{b^{2}-4 a}}{2 a}$ where $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$

Gradient:

- Line touches the curve at point
- Tan angle.
- Diff of y / diff of x

Equation of straight line \qquad
Where $\mathrm{m}=$ gradient, $\mathrm{c}=\mathrm{y}$ inerecept

Graphical soln:

- Point of intersection of curve with x axis or line
- Line cut x axis $\longrightarrow \mathrm{y}=0$
- Line cut y axis $\longrightarrow \mathrm{x}=0$

In a speed time graph:

Distance $=$ Area under graph.
Acceleration $=\frac{\operatorname{cha} \quad 0 \mathrm{~s}}{\mathrm{cha} \quad 0 \mathrm{tl}}$

Sets:

$A \cap B$
$1 \in \mathrm{~A}$
$1 \notin B$

Ā complement not A
AC δ
B $\ell \varepsilon$

$A \cup B$
all element

In Vector:

- If you want resultant you must start with point and end by the other.

For example: $\vec{A}=\vec{A}+\vec{C}+\vec{D}$

Column Vector:

$\binom{3}{2}=\vec{A}$
Start with A 3 unit in +ve x
Then 2 unit in +ve y

Parallel Vector:

$\mathrm{k}\binom{u}{{ }_{0}^{u}} / /\binom{u}{b}$

Modulus Vector:

- Length • magnitude

If $\vec{a}=\binom{x}{y} \longrightarrow|a|=\sqrt{x^{2}+y^{2}}$

Function:

- To get the inverse make x subject.
- Composed function substitute x by function.

Matrix:

Order R x C
$\mathrm{M}_{1} \times \mathrm{M}_{2}$
For multiply $\mathrm{R}_{1} \times \mathrm{C}_{1} \quad \mathrm{R}_{2} \times \mathrm{C}_{2}$
Condition $\quad \mathrm{C}_{1}=\mathrm{R}_{2}$

Inverse of matrix:

$$
\begin{aligned}
& \mathrm{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& \mathrm{A}^{-1}=\frac{1}{a-b}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \\
& \mathrm{AA}^{-1}=\mathrm{I}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \mathrm{I} \longrightarrow \text { Identity }
\end{aligned}
$$

Transformation:

G1 the size not change

- Reflection
\qquad Distance from O to Mir = Distance from I to Mir $\longrightarrow \mathrm{OI} \perp \mathrm{Mir}$
- Rotation \longrightarrow center $(\perp$ Bisector of O \& I)
\longrightarrow Angle of rotation
\longrightarrow Direction
- Translation $\longrightarrow\binom{x}{y}$ column vector

G2 the size changed (scale factor)

Enlargement

- Scale factor
- Center fenelayment

Scale Factor $=\begin{array}{ll}l t & \text { nto } I \\ l l & \text { no }\end{array}$

Shear

- Scale factor
- Invariant line

Scale Factor $=\frac{D-1}{20 \ln }$

Stretch

- Scale factor
- Invariant line

Scale Factor $=$| $\perp d$ | 0 | $I f$ | l_{1} |
| :--- | :--- | :--- | :--- |
| d | 0 | $0 f$ | l_{1} |

Statistics

- If histogram f.d $=\frac{f}{c \quad w n}$
- If pie chart total frequency $\equiv 360^{\circ}$

In cumulative frequency curve:
Median $=50 \%$ of frequency
Upper quartile $=75 \%$ of frequency
Lower quartile $=25 \%$ of frequency
Inter quartile $=$ upper - lower

Probability

$$
\begin{aligned}
& 0 \leq P \leq 1 \\
& \mathrm{P}=\frac{n \mathrm{n}_{\mathrm{e}} \mathrm{e}}{a \mathrm{e}}
\end{aligned}
$$

Sum of all probability $=1$
For 2 events A \& B
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
If we have 2 points

$$
\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \quad \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)
$$

A
B
Length of $\bar{A}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Mid-point $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$\operatorname{Grad}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

