Integration

Section 6: Integration by Parts

Notes and Examples

These notes contain subsections on

- Integration by parts
- Definite integration by parts

Integration by parts

Integration by parts is another technique which can sometimes be used to integrate the product of two simpler functions. It is useful in many cases where a substitution will not help, although it cannot be used for all functions.

Suppose you want to integrate $x \cos x$. This is the product of two functions which we can integrate, x and $\cos x$. This suggests that reversing th@product rule might give us a method.

Try differentiating $x \sin x$ using the product rule: χ

So

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(x \sin x) & =x \times \cos x+\operatorname{sir} \Omega \times 1 \\
& =x \cos x+\sin \cdot x
\end{aligned}
$$

and

$$
\begin{aligned}
& \int(x \cos x+\sin x) \mathrm{d} x=c \\
& \int x \cos x \mathrm{~d} x+\int \sin (x) d x=x \sin x+c \\
& \int x \cos x \mathrm{~d} x=x \sin x-\int \sin x \mathrm{~d} x+c
\end{aligned}
$$

and finally

We need to take the cleverness out of this method and make it more systematic!
Starting with the product rule for differentiation:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}(u v)=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x} \\
\Rightarrow \quad & u \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} x}(u v)-v \frac{\mathrm{~d} u}{\mathrm{~d} x}
\end{aligned}
$$

Now integrate both sides with respect to x :

$$
\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=\int \frac{\mathrm{d}}{\mathrm{~d} x}(u v) \mathrm{d} x-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \quad \begin{aligned}
& \text { Differentiating } u v, \text { then } \\
& \text { integrating the result, just } \\
& \text { leaves } u v!
\end{aligned}
$$

$$
\Rightarrow \quad \int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x
$$

This formula is called integration by parts.
This formula can be used to find the integral of $x \cos x$ shown earlier:
Split the integrand $x \cos x$ into two parts u and $\frac{\mathrm{d} v}{\mathrm{~d} x}$:

$$
u=x, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\cos x \Rightarrow v=\int \cos x \mathrm{~d} x=\sin x \quad \not \ldots \ldots \text { You don't need a ' }+c \text { ' here, as }
$$ it is added to the final result

So $\quad \int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$

$$
\begin{aligned}
\Rightarrow \quad \int x \cos x \mathrm{~d} x & =x \sin x-\int \sin x \frac{\mathrm{~d}}{\mathrm{~d} x}(x) \mathrm{d} x \\
& =x \sin x-\int \sin x \mathrm{~d} x \\
& =x \sin x+\cos x+c
\end{aligned}
$$

Here is a further example.

Example 1

Find $\int x \sin x d x$

Solution

$$
\begin{aligned}
& u=x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=1 \\
& \frac{\mathrm{~d} v}{\mathrm{~d} x}=\cos x \Rightarrow v=\int \cos x \mathrm{~d} x=\sin x
\end{aligned}
$$

Using the formula for integration by parts:

$$
\begin{aligned}
& \int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x= \\
& \begin{aligned}
\int x \cos x \mathrm{~d} x & =x \sin x-\int \sin x \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \\
& =x \sin x-\int \sin x \mathrm{~d} x \\
& =x \sin x+\cos x+c
\end{aligned}
\end{aligned}
$$

The choice of how to divide up the integrand between u and $\frac{\mathrm{d} v}{\mathrm{~d} x}$ is a matter of experience. Usually, u is a simple function, such as a linear function of x, which becomes even simpler when differentiated.

However, when the integrand involves a logarithm, this has to be ' u ': $\ln x$ can't be integrated easily, so it can't be $\frac{\mathrm{d} v}{\mathrm{~d} x}$. This is shown in the following example:

Example 2

Find $\int x \ln x d x$.

Solution

$u=\ln x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x}$
$\frac{\mathrm{~d} v}{\mathrm{~d} x}=x \Rightarrow v=\frac{1}{2} x^{2}$
Using the formula for integration by parts:

$$
\begin{aligned}
\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x & =u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \\
\Rightarrow \quad \int x \ln x \mathrm{~d} x & =\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x^{2} \times \frac{1}{x} \mathrm{~d} x \\
& =\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x \mathrm{~d} x \\
& =\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+c
\end{aligned}
$$

Definite integration by parts

When using integration by parts ota definite integral, the formula for integration by parts becomes

$$
\int_{a}^{b^{b}} u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=[u v]_{a}^{b}-\int_{a}^{b} v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x
$$

Notice that the ' $u v$ ' parit of the formula should be evaluated between the limits, as in this final example:

Example 3

Find $\int_{0}^{\pi / 6} x \sin 2 x \mathrm{~d} x$.

Solution

$u=x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=1$
$\frac{\mathrm{d} v}{\mathrm{~d} x}=\sin 2 x \Rightarrow v=\int \sin 2 x \mathrm{~d} x=-\frac{1}{2} \cos 2 x$
Using the formula for integration by parts:

$$
\begin{aligned}
& \int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v- \int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \\
& \begin{aligned}
\int_{0}^{\pi / 6} x \sin 2 x \mathrm{~d} x & =\left[-\frac{1}{2} x \cos 2 x\right]_{0}^{\pi / 6}-\int\left(-\frac{1}{2} \cos 2 x\right) \cdot 1 \mathrm{~d} x \\
& =\left(-\frac{1}{2} \times \frac{\pi}{6} \cos \frac{\pi}{3}+\frac{1}{2} \times 0 \times \cos 0\right)+\int \frac{1}{2} \cos 2 x \mathrm{~d} x \\
& =-\frac{\pi}{24}+\left[\frac{1}{4} \sin 2 x\right]_{0}^{\pi / 6} \\
& =-\frac{\pi}{24}+\frac{1}{4} \sin \frac{\pi}{3}-\frac{1}{4} \sin 0 \\
& =-\frac{\pi}{24}+\frac{\sqrt{3}}{8} \\
& =\frac{3 \sqrt{3}-\pi}{24}
\end{aligned}
\end{aligned}
$$

You may also like to look at the Integration by parts video.

