Integration

Section 5: Integrating other functions

Notes and Examples

These notes contain subsections on

- Integrating exponential functions
- Logarithmic integrals
- Using the methods of substitution and inspection
- Integrating trigonometric functions

Integrating exponential functions

Remember that the derivative of e^{x} is e^{x}. Therefore

$$
\int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}+c .
$$

Similarly, since the derivative of $\mathrm{e}^{k x}$ is $k \mathrm{e}^{k x}$:

Example 1
Evaluate $\int_{0}^{2} \sqrt{\mathrm{e}^{x}} \mathrm{~d} x$, giving your answer interms of e .

Solution

$$
\begin{aligned}
\int_{0}^{2} \sqrt{\mathrm{e}^{x}} \mathrm{~d} x & =\int_{0}^{2} \mathrm{e}^{\frac{1}{2^{x}} \mathrm{~d} x} \mathrm{~d} \\
& =\left[2 \mathrm{e}^{\frac{4}{x}}\right]_{0}^{20} \\
& =\left[2 \mathrm{e}^{\frac{1}{2} x}\right]_{0}^{2} \\
& =2 \mathrm{e}^{1}-2 \mathrm{e}^{0} \\
& =2 \mathrm{e}-2
\end{aligned}
$$

Logarithmic integrals

The derivative of $\ln x$ is $\frac{1}{x}$. It follows that $\int \frac{1}{x} \mathrm{~d} x=\ln x+c$, provided $x>0$. Also, if $x<0$, the derivative of $\ln (-x)$ is $\frac{1}{(-x)}$. $(-1)=\frac{1}{x}$, so $\int \frac{1}{x} \mathrm{~d} x=\ln (-x)+c$. These two results are sometimes combined using a modulus sign:

$$
\int \frac{1}{x} \mathrm{~d} x=\ln |x|+c
$$

Care needs to be taken when using this result. The domain of x must be either $x>0$ or $x<0-$ you cannot integrate across zero, as the next example illustrates.

Example 2

Find $\int_{-1}^{3} \frac{1}{x} \mathrm{~d} x$.

Solution

The integral is the area between the curve $y=\frac{1}{x}$ and the lines $x=-1$ and $x=3$.

From the graph, you can see that this area is not defined, as it includes the value $x=0$ for which the function $y=\frac{1}{x}$
 is not defined!

Example 3
Integrate $\int \frac{1}{3 x} \mathrm{~d} x$

Solution

$$
\begin{aligned}
\int \frac{1}{3 x} \mathrm{~d} x & =\frac{1}{3} \int \ln x \mathrm{~d} x \\
& =\frac{1}{3} \ln |x|+c
\end{aligned}
$$

The example above illustrates an important point. In the same way that the integral of $\mathrm{e}^{k x}$ is $\frac{1}{k} \mathrm{e}^{k x}+c$, it is logical that the integral of $\frac{1}{k x}$ is $\frac{1}{k} \ln |k x|+c$, and in fact this is quite true. But in the example above, the integral of $\frac{1}{3 x}$ is given as $\frac{1}{3} \ln |x|+c$ rather than as $\frac{1}{3} \ln |3 x|+c$.

The answer to this problem is that in fact these two expressions are the same. Remember that by the laws of logarithms, $\ln |3 x|=\ln 3+\ln |x|$. So $\frac{1}{3} \ln |3 x|+c$ may be written as $\frac{1}{3} \ln |x|+\frac{1}{3} \ln 3+c$. But $\ln 3$ is just a constant, and so it can be considered as part of the arbitrary constant.

In general, it is easier to take any constant outside the integral, as in Example 3 , since this gives you a simpler expression to work with.

Using the methods of substitution and inspection

Example 4

Find $\int \frac{x}{1+x^{2}} \mathrm{~d} x$.

Solution

Use the substitution $u=1+x^{2}$

$$
\begin{aligned}
u=1+x^{2} & \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 x \\
& \Rightarrow \mathrm{~d} x=\frac{1}{2 x} \mathrm{~d} u \\
\int \frac{x}{1+x^{2}} \mathrm{~d} x & =\int \frac{x}{u} \times \frac{1}{2 x} \mathrm{~d} x \\
& =\int \frac{1}{2 u} \mathrm{~d} x \\
& =\frac{1}{2} \ln u+c \\
& =\frac{1}{2} \ln \left(1+x^{2}\right)+c
\end{aligned}
$$

Notice that this integral can be done quicker by inspection, by noting that the derivative of $\ln \left(1+x^{2}\right)$ is $\frac{1}{1+x^{2}} \times 2 x=\frac{2 x}{1+x^{2}}$. This is twice the integrand, so it follows that $\int \frac{x}{1+x^{2}} \mathrm{~d} x=\frac{1}{2} \ln \left(1+x^{2}\right) 4 c$.
It is easy to spot integralswhich can be done by substitution to give a logarithm. If the integrandis a fraction, the numerator of which is the derivative of the denominator, then the integral is the natural logarithm of the denominator.

This can be geheralised:

$$
\int \frac{\mathrm{f}^{\prime}(x)}{\mathrm{f}(x)} \mathrm{d} x=\ln |\mathrm{f}(x)|+c
$$

As in Example 4, in some cases the numerator is a multiple of the derivative of the denominator, so you need to adjust things a little. In Examples 5 and 6 this approach is used.

Example 5
Find $\int \frac{\mathrm{e}^{2 x}}{1+\mathrm{e}^{2 x}} \mathrm{~d} x$

32

Solution

$$
\begin{aligned}
\int \frac{\mathrm{e}^{2 x}}{1+\mathrm{e}^{2 x}} \mathrm{~d} x & =\frac{1}{2} \int \frac{2 \mathrm{e}^{2 x}}{1+\mathrm{e}^{2 x}} \mathrm{~d} x \\
& =\frac{1}{2} \ln \left(1+\mathrm{e}^{2 x}\right)+c
\end{aligned}
$$

Example 6

Find $\int_{1}^{2} \frac{1+x^{2}}{3 x+x^{3}} \mathrm{~d} x$, expressing the answer as a single logarithm.

Solution

The derivative of $3 x+x^{3}$ is $3+3 x^{2}=3\left(1+x^{2}\right)$. This is three times the numerator of the integrand. So

$$
\begin{aligned}
\int_{1}^{2} \frac{1+x^{2}}{3 x+x^{3}} \mathrm{~d} x & =\frac{1}{3} \int_{1}^{2} \frac{3+3 x^{2}}{3 x+x^{3}} \mathrm{~d} x \\
& =\frac{1}{3}\left[\ln \left|3 x+x^{3}\right|\right]_{1}^{2} \\
& =\frac{1}{3}(\ln 14-\ln 4) \\
& =\frac{1}{3} \ln \left(\frac{14}{4}\right) \\
& =\frac{1}{3} \ln \left(\frac{7}{2}\right)
\end{aligned}
$$

You may also like to look at the Integration that leads to log functions video.

Integrals of trigonometric functions

The derivative of $\sin x$ is $\cos x$; the derivative of $\cos x$ is $-\sin x$. It follows that

$$
\int \sin x d x=-\cos x+c \quad \int \cos x d x=\sin x+c
$$

Another useful result to bear in mind is that the derivative of $\tan x$ is $\sec ^{2} x$, so

$$
\int \sec ^{2} x d x=\tan x+c
$$

Similarly, by looking at the derivatives of $\sin k x, \cos k x$ and $\tan k x$, you can see that

$$
\int \sin k x \mathrm{~d} x=-\frac{1}{k} \cos k x+c \quad \int \cos k x \mathrm{~d} x=\frac{1}{k} \sin k x+c \quad \int \sec ^{2} k x \mathrm{~d} x=\frac{1}{k} \tan k x+c
$$

Example 7

Find (i) $\int \sin 3 x d x$
(ii) $\int_{0}^{\pi / 6} \sec ^{2} 2 x \mathrm{~d} x$
(iii) $\int \sin ^{2} x \cos x d x$

Solution

(i) $\int \sin 3 x \mathrm{~d} x=-\frac{1}{3} \cos 3 x+c$
(ii) $\quad \int_{0}^{\pi / 6} \sec ^{2} 2 x \mathrm{~d} x=\left[\frac{1}{2} \tan 2 x\right]_{0}^{\pi / 6}$

$$
\begin{aligned}
& =\frac{1}{2}\left(\tan \frac{\pi}{3}-\tan 0\right) \\
& =\frac{1}{2} \sqrt{3}
\end{aligned}
$$

(iii) $\quad \int \sin ^{2} x \cos x \mathrm{~d} x$ can be done using the substitution $u=\sin x$

$$
\begin{aligned}
u=\sin x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x} & =\cos x \Rightarrow \mathrm{~d} x=\frac{1}{\cos x} \mathrm{~d} u \\
\int \sin ^{2} x \cos x \mathrm{~d} x & =\int u^{2} \cos x \times \frac{1}{\cos x} \mathrm{~d} u \\
& =\int u^{2} \mathrm{~d} u \\
& =\frac{1}{3} u^{3}+c \\
& =\frac{1}{3} \sin ^{3} x+c
\end{aligned}
$$

You could also do this by inspection: notice that the integral is a product of $\sin ^{2} x$ (a function of $\sin x$) and $\cos x$ (the derivative of $\sin x$)

